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A fundamental benefit of the theory of structural reliability is that it 
puts the understanding of what affects structural safety on a firm basis. 
It permits one to isolate factors that are widely known to affect safety 
and to determine new, less obvious, factors. In both cases the factors 
can be studied quantitatively to determine the situations under which 
they are significant and, just as important, the circumstances under which · 
they are relatively unimportant. In this paper a number of such factors 
are identified and known results, determined from previous theoretical 
studies, are deduced and interpreted in an elementary manner. The in­
tent is to keep the discussion non-theoretical and qualitative in nature, 
relying upon the reader's intuitive understanding of simple probability 
notions3 to justify the conclusions. 

The succeeding sections will cover some lessons to be learned from 
focusing attention on, in turn, the individual components of a structure, 
a structure subjected to an entire history of loading, complex structure 
under a known load, and finally a similar structure under an uncertain 
load. 

I. Associate Professor, Massachusetts Institute of Technology 
2. Research Assistant, Massachusetts Institute of Technology 
3. Meyer, P. L. "Introductory Probability and Statistical Applications," Addison­

Wesley, 1965 
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LOAD AND STRENGTH VARIATION INFLUENCE 
It is widely recognized that the safety of a member is determined 

not only by the relationship between the typical or central values of 
material strengths and applied loads, but also by the degree of varia­
bility or dispersion demonstrated by both strengths and loads. Owing 
to the nature of the material and to the conditions under which it is 
manufactured, relative dispersion in concrete strengths is known, for 
example, to be larger generally than in steel strengths. This variability 
influences a member's reliability, i.e., the likelihood that it will perform 
properly in service. Similarly, the wide variation in earthquake accelera­
tions, storm wind velocities, and numerous other natural loadings makes 
it unwise to design for their average annual maximum values; their 
variability too is significant. 

But how do these factors influence safety and to what extent? Sketches 
of histograms of numerous strength and load observations can be con­
verted to similar units, and juxtaposed as shown in Figure 1. Measures 
of the central or typical values are the average or mean load, m V and 
mean strangth or resistance, m;R- A measure of the variation in the load 
is O 1; the variance, or moment of inertial of the histogram about its 
mean: 

Frequency, Loads 

Frequency, Strengths 

HISTOGRAMS OF LOAD AND 
STRENGTH OBSERVATIONS 

Figure I 
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crz = .!_. 
L n i::. 

i = 1 

in which the Xi are the observed values of the load. The square root of 
this variance, OL, called the standard deviation, has the same units as 
the load and its length is plotted on the sketches. Analogous measures 
of the central value and dispersion of the resistance are also shown, 
mR and OR. 

Clearly a particular member will perform properly only if its par­
ticular strength, R, exceeds the particular load, L, to which it is sub­
jected. From the histograms shown one can estimate the proportion of 
combinations of one strength and one load which will perform satis­
factorily (i.e., for which R > L), and this proportion or probability is 
called the reliability of the member. Through reliability theory it can 
be shown (see Appendix II) that this number, Ps, is at least 

p 
s 2 

in which the two constants KR and KL depend upon the shapes of 
the corresponding histograms. This bound may be well below the actual 
value (which the theory can also determine4 - 5), but the lower hound's 
simple form facilitates direct interpretation. 

This simple relationship can be used to gain an appreciation for the 
effect of means and dispersions on reliability. It is somewhat more 
straight forward to discuss one minus the reliability, Pf = I - Ps, which 
is called the probability of failure, failure to perform satisfactorily with 
respect to safety or serviceability, depending on the problem. From Eq. 2 

4. Freudenthal, A. M., Garrelts, J. M., Shinozuka, M. "The Analysis of Structural 
Safety", Journal of the Structural Division, Proceedings of ASCE, Vol. 92, No. 
STI, February, 1966 

5. Turkstra, C. J., "A Formulation of Structural Design Decisions," thesis presented 
to the University of Waterloo, at Waterloo, Canada, 1962, in partial fulfillment of 
the requirements for the degree of Ph. D. in C. E. 



138 BOSTON SOCIETY OF CIVIL ENGINEERS 

Eq. 3 reveals that the probability of failure (as reflected in this upper 
bound) depends not only on the difference in central values mR - mL, 
but also on the dispersions of both resistance and load, and in a sym­
metrical, additive way. 

Effect of Resistance Variation 

3 

Letting YR = a R/mR and V L = a LlmL, Eq. 3 also can be re­
written as 

< 4 

In this form it is apparent that, for given central values, mR and mL 
the (upper bound on the) probability of failure increases linearly with 
the square of the ratio OR/mR = VR. This non-dimensional ratio, 
called the coefficient of variation, can be used to compare the variability 
of different phenomena, such as two materials. Mill tests on the yield 
stress of mild steel, for example, have shown6 - 7 a coefficient of about 
7 to 8 % , while the same coefficient for concrete compressive stress may 
vary from 10 to 25% depending upon the quality control exercised.8 

In addition to inherent material variability, dispersion due to fabrica­
tion and other factors must in general be included in the definition of 
the coefficient of variation of the resistance of a member in place, as 
will be discussed. 

6. Julian, 0. G., "Synopsis of the First Progress Report of the Committee on Factors 
of Safety," Journal of the Structural Division, Proceedings of ASCE, Vol. 83, I 957 

7. Freudenthal, A. M., "Safety and Probability of Structural Failure," Journal of the 
Structural Division, Proceedings of ASCE, Vol. 121, 1956 

8. ACI Standard 214-65, "Recommended Practice for Evaluation of Compression 
Test Results of Field Concrete," Jan. 1965 
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Effect of Load Dispersion 
At the same time Eq. 4 shows that the coefficient of variation of the 

load affects reliability in a parallel way. For given central values, a 
structure is less safe with respect to wind loads9 where VL = 30 to 50% 
than with respect to dead loads10- 11 where VL is less than 10%. Most 
present building codes reflect the influence of uncertainty primarily 
through load factors of different magnitudes. Although seldom in a 
quantified manner, nominal working loads and specified strengths may 
also reflect a L and OR as well as m L and m R· The most recent codes 10 

make these relationships more explicit, choosing design loads, for ex­
ample, proportional to mean (maximum) loads plus a fixed number of 
standard deviations. 

Effect of Resistance Versus Load 
It is commonly stated that the uncertainty in the loading on structures 

is so great that the variability in the strengths of most common construc­
tion materials is negligible in comparison. Eq. 4 permits a ready quan­
titative evaluation of this statement. Notice: that the coefficients of 
variation appear squared emphasizing the difference between VL and 
VR, Representative values of the former might range from 0.1 to a 
typical value of 0.5 or above, while the latter might range from 0.05 
through a typical value of 0.1 or 0.15 to 0.3 or above. The ratio of 
V2LfV2R for typical values is of the order of 20, which seems to verify 
the common statement. Notice, however, that in the expression for (a 
bound on) the probability of failure (Eq. 4), there appear the products 

· KR_m2R V2R and KLm2L V21J. Assuming the shape factors KR and 
KL are about equal, it is the relative values of m2L V2L and m2R V2R 
which should be compared. For a typical value4 of the "central" safety 
factor mRlmL 5, we find m2L V2Lfm2RV2R (or 0 2L/ 0 2R, 
Fig. I) about equal to unity for typical values of VL and YR, The relative 
contribution of resistance variation to the upper bound on the probability 
of failure is shown in Fig. 2 for several cases. The implication is that 
under typical situations the presently available data fail to justify the com­
mon adage that resistance variation has a relatively negligible influence 
upon the safety of a structure. The larger the value of the central safety 

9. Thom, H. C. S., "On Extreme Winds in the United States," ASCE Trans., Vol. 126, 
1960 

10. C. E. B. Code, "Recommendations for an International Code of Practice for Rein­
forced Concrete," published by the American Concrete Institute and the Cement 
and Concrete Association 

11. Rosenblueth, E., "Safety in Structural Design," Ch. 19, of a handbook on rein­
forced concrete design, edited by B. Bresler. To be published. 
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factor the more important resistance variation becomes. These conclusions, 
however, are subject to many qualifications, ranging from the lack of 
sufficient empirical data (both in number and kind), through the assump­
tion that the coefficients of variation are approximately independent of 
means, to the inadequacy of the theoretical bound in expressing true re­
liability. Nonetheless the way is clear to begin adequate studies of such 
questions. mR 
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Figure 2. 

Effect of Dead Versus Live Load 
It is possible to go on to investigate the factors which make up the 

loads and resistances in order to understand better the influences upon 
structural safety. The total load, for example, is often considered to be 
the sum of two or more independent loads, say dead load, D, plus live 
or service load, S. Larger dead load/live load ratios are often stated 
to be advantageous to safe structures. This conclusion presumably arises 
from engineers' reflection upon the relative uncertainty in dead and live 
loads. This uncertainty may be expressed in the variances. If the loads 
are additive, their means and variances are known to add to be the 
mean and variance of the total load, L, 

m =m +m 5 
L D S 

<r2 = (f2 +Q"2 
L D S 

6 



ELEMENTARY SAFETY ANALYSIS 141 

For given values of the central safety margin, mR - mL, of the resis­
tance characteristics, mR and. OR, and of the shape factors, KR and 
KL, Eq. 4 reveals that the reliability depends upon V2L alone. This 
coefficient can be expanded as follows: 

= 

7 

Replacing the ratio of central values of dead load to live load m0 /ms 
by r, and the ratio of the corresponding coefficients of variation Vo/Vs 
by v, 

8 

In virtually all cases O < v < 1. The above function is plotted for 
several values of v in Figure 3. Notice that larger <;lead-load-to-live­
load mean ratios, r, are advantageous to safe structures only up to the 
point where V2L reaches its minimum, that is when r ~ l/v2 • Be­
yond this point, V2L is a slowly increasing function of r. In the range 
of values of v and r of usual interest however, the intuitive conclusions 
are analytically justified. 
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DEPENDENCE OF THE SAFETY UPON THE 
DEAD LOAD/LIVE LOAD RA TIO 

Figure 3 

Effect of Resistance Factors 

r 

Resistance variation is also not solely a function of one factor. The 
dispersion in the ultimate moment capacity of nominally similar cross­
sections of reinforced concrete beams, for example, depends on the 
variability of steel yield stress, of concrete compressive stress, and of 
fabrication. The last factor includes the rolling of the steel bar, the 
construction of the forms, and the placing of the steel and concrete. 
A simple approximation (see Appendix III) implies that the variance 
of the ultimate moment is the sum of the variances of the independent 
variables multiplied by the squares of corresponding "sensitivity factors." 
These latter factors indicate the effect of the variable upon the beam's 
capacity; they are simply the partial derivatives of the ultimate mome~t 
with respect to the variables (evaluated at the variables' mean values). 
Formally 

Q"'. f. x. 
1 

9 
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in which the Xi'.s are the variables upon which the cross-sectional re­
sistance depends (steel yield stress, depth of steel, width of beam, etc., 
in the case of reinforced concrete beam), the a :x_ . are the variances of 
these variables, and theb;R/bXi are the partial deritatives of the expres­
sion relating R to the Xifs (e.g., the equation for the ultimate moment 
capacity appearing in the ACI code12). Studies involving such approxi­
mations and typical values of the mean and variance of the variables 
can be immediately revealing. Even though concrete compressive strength 
variation is relatively large, for example, it has a negligible influence on 
the dispersion of the moment capacity of an under-reinforced cross­
section.13 This is true because the sensitivity factor is very low for this 
variable, sufficiently so to offset the high variance. Steel yield force and 
depth of steel contribute the dominant proportions of resistance varia­
tion in this case. Variation in latter arises, of course, owing to con­
struction practice and workmanship variability. The shear capacity var­
iance, on the contrary, may depend strongly upon concrete strength 
variability, depending upon the amount of transverse reinforcement. Such 
observations, crude as they may be, can have important implications on 
where an input of effort and expense (such as more strict inspection of 
certain operations) could most effectively improve structural safety. 

Effect of Statical Indeterminacy 
Yet another influence upon the safety of a member is thought to be 

its degree of statical indeterminacy. Reference to "multiple load paths" 
providing redundancy or to "back up" resistance is often heard in such 
discussions. Reliability theory can shed light too upon this influence. 
Consider the three prismatic beams, pictured in Figure 4. By proper 
choice of the beam sizes the nominal or mean capacities m * , m R 
and mRC can be made equal. Choose the mean moment capacity of 
a cross-section of Beam B equal to 2/3 that of Beam A, and choose 
the mean moment capacity of Beam C equal to 1/2 that of a cross­
section of Beam A. Assuming perfect elasto-plastic behavior, the mean 
capacities are then equal (Figure 4): 

12. ACI 318-63, "Building Code Requirements for Reinforced Concrete," published by 
the American Concrete Institute, June, 1963 

13. Plum, N. M., "Quality Control of Concrete, Its Rational Basis and Economic As­
pects," Inst. Civ. Eng., Proc., Part I, 1953 
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m~ = {2/d)(2m + m + m ) = (8 /d)m 

. A 
= (4/d)m 

10 

12 

In which mA, m8 and mC are the mean values of the moment capa­
cities MiA, MiB and MiCof the cross-section of beams A, B and C, re­
spectively, and dis the distance between the beam supports. 

The variances of the beams' capacities may differ considerably, how­
ever. Assuming that the coefficients of variation, vA, vlB, and \IC, of 
all beams' cross-section capacities are equal, the standard deviations of 
the cross-sections are 

(T'A = mAVA 

(f'B = mBVB 

(J"c = m eve 

= (2 /3)mAVA = (2/3) <rA 
A A A 

= (l/2)m V = (1/2) O" 

13 

14 

15 



ELEMENTARY SAFETY ANALYSIS 145 

In whichaA,aB andaC are the standard deviations of M1A, MiB and 
Mic, respectively. The variances of the resistances of the beams follow 
from elementary probability theory as 

( Q"A)2 16 

17 

18 

These results depend upon the assumption that the cross-sectional mo­
ment capacities are probabilistically independent, a notion which will 
be returned to shortly. In terms ofaA or simply a, 

19 
Q'2 A= 16 <r2 

2 R 
d 

f 2
B 

20 (<r/ 40 ~2 13. 3 <r2 
- 2 - = 

R 
d 3d

2 d2 

20 

CJ"
2 

C 
24 ( O""c) 2 12 (I" 2 -
d2 

-
d2 R 

21 

Under these conditions, although mean member resistances are equal, 
the variability in the resistance decreases, while reliability increases, as 
the degree of indeterminacy grows. Reliability theory here supports and 
quantifies the engineer's intuition about ductile, indeterminate structures. 
(Brittle structures do not share this advantage.)14 

14. Shinozuka, M., "On Fatigue Failure of a Multiple-Load-Path Redundant Struc­
tures," Vol. 2, Proc. of the First Intern. Conf. on Fracture, Sendar, Japan, 1965 
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A critical assumption in the previous argument was that of prob­
abilistic independence among the cross-section capacities within a beam. 
Such independence implies the assumption of a lack of correlation or 
coherence among these capacities compared to the capacities of all 
beams. In fact, owing to their common background (same batch of 
steel, same rolling and cooling experience, etc.), some degree of prob­
abilistic dependen~e undoubtedly exists among the cross-section capa­
cities within a beam. If the capacity of one cross-section in · a beam is 
above the average among all such beams, it is very likely that other 
cross-sections of the same beam are also above average. In other words, 
if the capacity of one cross-section in a beam were tested and found 
to be a particular value, say 10% more (or less) than the population 
average, another cross-section in the same beam will ·most likely have 
a capacity very near that same value, rather than continuing to be 
about equally likely to be either higher or lower than the population 
average. 

Such correlation is subject to experimental estimation. Its effect on 
the previous results can be large.15 - 16 If as a limit, the correlation is 
perfect, it implies that all cross-sectional capacities (although still sub­
ject to variation from beam to beam) are equal within a beam. In 
Case B, this perfect dependence would imply M1B = M2B. In this case 

IJ"2B 
R 

While in Case C 

23 

In short, if this dependence or correlation is very nearly perfect, which 
intuition and initial evidence15 suggests is the case, the variability of an 
indeterminate beam is no less than that of a determinate one. Con­
sequently it is ·no more safe. It is unconservative to ignore this de-

15. Cornell, C. A., "Bounds on the Reliability of Structural Systems," Journal of the 
Structural Division, Proceedings of ASCE, Vol. 93, No. ST!, February, 1967 

16. Tichy M. and Vorlicek M., Safety of Reinforced Concrete Framed Structures, Pro­
ceedings of the International Symposium on Flexural Mechanics of Reinforced 
Concrete, Miami, Fla., November, 1964, ASCE, 1965 
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pendence in a safety study of redundant structures. Reliability theory 
thus may reveal that there exist unsuspected influences on structural 
safety. Probabilistic independence versus dependence is one such in­
fluence that appears throughout more thorough reliability studies. 15- 16- 17 

LENGTH-OF-LIFE INFLUENCE ON STRUCTURAL SAFETY 
A structure which must serve for a longer time should be designed 

more conservatively. This common axiom too is easily investigated 
through some elementary ideas of structural reliability analysis. Given 
the reliability, Ps, of a member. or structure subjected to a single load, 
the reliability of the same structure subjected to a sequence of such 
loads can be estimated as follows. 

Elementary probability theory states that the probability of two in­
dependent events occurring is the product of their probabilities. So 
the probability of getting two successive heads on two flips of a well­
balanced coin is (l/2) (½) or ¼. If the events are not independent, 
but dependent or related in some way,' the second factor must be re­
placed by the conditional probability of the second event given that 
the first has occurred. So the probability that the result of the throw 
of the die is both odd and less than four is ( ½) (2/2) = ½ . The first 
factor is the probability of an odd number, 1, 3, or 5. The second 
factor is the conditional probability of a number less than four given 
that the outcome was odd, 1 or 3. (The answer is not (½) (½ ), the 
probability of an odd number times the probability of a number less 
than four.) So, to determine the probability that a structure survives 
two load applications, Ps2, we must multiply the probability of a sur­
vival on the first load application, Ps

2
, times the conditional probability 

of survival on the second given survival on the first, P [s2 I si]. (Read 
P [A I BJ as the probability of event A given that event B occurred.) 

24 

17. Ang, A. H. S., and Amin, M., "Studies of Probabilistic Safety Analysis of Struc­
tural Systems", University of Illinois Civil Engg. Studies, Struct. Res. Series No. 
320, 1967 
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(If the successive loads are taken to be the annual maximum loads, the 
number of loads can be equated to years of service.) 

The value of this conditional probability may range from a number 
as low as P s to one as high as unity.5 - 15 If the successive loads are 
independent, the conditional probability may be about P8. Then 

p ';! p p = (1 - p )(1 - p ) ";! 1 - 2Pf 25 
s s s f f 

2 

For n loads the result becomes 

P ':!! 1 - n P 
s f 26 

n 

In this case the reliability of the structure (now defined as the likeli­
hood that it will perform satisfactorily throughout its lifetime) decays 
almost linearly with the number of anticipated loads. This conclusion 
is a quantitative verification of the statement opening this section. It 
now might be re-stated: "if a structure must serve satisfactorily for n 
years, it should be designed with a probability of unsatisfactory per­
formance under one annual maximum load, i.e., with a Pf, equal to 
about one-half that of . a similar structure which need serve only for 
n/2 years." 

The situation may not, however, dictate that the conditional reliability, 
P [s2 I si] is equal to P8 • For example, if there is virtually no varia­
tion in the load, but resistance variation is large, then knowledge that 
the structure performed adequately under the first load almost guaran­
tees that a low resistance does not exist and hence that in following 
years the performance will be equally satisfactory. The first load has in 
essence performed a proof test. This case is illustrated in Figure 5. 

In this case 

27 
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and more generally 

Frequency I Loads 

Frequency I Resistances 

SMALL LOAD VARIABILITY SITUATION V « V 
L R 

Figure 5. 
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-28 

Such a situation occurs in the static design of a dam. The maximum load 
each year may be always very nearly the capacity of the dam, while 
the resistance involves significant uncertainty in material properties, abut­
ments strengths, etc. Also, if the significant uncertainty in a structure's 
resistance lies not in material variability, but in possible design or work­
manship errors, blunders, or omissions, the first major load (even if it 
is only an average one) will be likely to cause the failure if it is going 
to occur. Many construction failures support this observation. In these 
situations the reliability is not as length-of-life sensitive. (Time-dependent 
or deteriorating strength is not under consideration here, although this, 
too, can be treated.4-15-18) 

18. Leve, H. L., "Reliability Framework for Structural Design," Journal of the Struc­
tural Division, Proceedings of ASCE, Vol 89, No. ST!, August, 1963 
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Quite another situation may lead to the conclusion that P [s2 I si] = 1. 
Here, the relatively unfamiliar notion of probabilistic dependence is 
again the critical factor. If the successive loads are highly correlated, 
as say dead loads are, then knowledge that in the first year the maxi­
mum load didn't exceed the capacity implies that future loads (which 
are not necessarily well known, but, owing to dependence, will be of 
very nearly the same magnitude as the first) will also fail to exceed the 
capacity. The conclusion is, then, the same as Eq. 28. 

In general, for n loads the likelihood of satisfactory performance lies 
between 

1 - nP < P < 1 - P 
f s f 29 

n 

as illustrated in Figure 6. The lower bound4 - 15 1 - nPf may estimate 
well the common case where load variability, av exceeds significantly 
resistance variability, and when successive load values may be treated 
as independent. 

P
8
= 1-P1 

l -2P1 
L -3P1 

Band of Possible 

OL-_.J.._ _ _J_ _ __J, _______________ ► 

2 n 

INFLUENCE OF TIME ON STRUCTURAL SAFETY 

Figure 6. 
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STRUCTURAL SYSTEM RELIABILITY 
UNDER GIVEN LOAD 

15 I 

When structures become more complicated than single members, their 
safety may be jeopardized by failure of any of several potential modes 
of failure. A determinate truss will fail if any bar fails. A building 
may collapse owing to one of several potential weaknesses in its frame, 
or due to a shear failure of a footing, or because of a foundation sta­
bility problem (Figure 7). The analogy is sometimes made to a chain of 
many links in order to argue that the structural system is no stronger 
than its weakest mode. Hence the number of modes and the safety of 
each member or mode must influence the total system's reliability. 

llJ/4ll ' / ', . /.,, Ra 
R10/ __ ... 

R 1 : beam in bending 

R2,R3 beam in shear 

R 4,R 5 : column instability 

R 6 ,R 7 : column local buckling 

R 8,R 9 : footing in shear 

R 10,R 11 : foundation instability 

SCHEMATIC COLLECTION OF POTENTIAL 
MODES OF COLLAPSE 

Figure 7. 
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These effects are best studied in isolation of loading variation, the 
influence of which will be discussed in the next section. Assume then 
that the load is given exactly, or that it demonstrates relatively little 
dispersion about its known central value, or that for artificial reasons, 
such as a legally specified maximum load, interest lies only in the safety 
of the structure under a given load. 

By an argument parallel to that in the previous section it is clear that 
Ps, the likelihood of survival of two modes of the system, is the pro­
duct of P 1s, the reliability of the first mode or member, times P [2s I 1s] 
the conditional reliability of the second mode given survival of the first. 

p s = p s p [2 s I 1 s J 
1 

30 

Since the load is fixed, if the capacities of the first and second modes 
are probabilistically independent, survival of the first contains no infor­
mation about the safety of the second. Thus P [2s I 1s] = P2s, the re­
liability of the second mode. Then 

p 
s 

= (1 - P f)(l 
2 

(Pf + p f) 
1 2 31 

in which P 1f and P
2
f are, respectively, the probabilities that the capaci­

ties of modes 1 and 2 are insufficient. Under these circumstances the 
system probability of failure, Pf, is approximately equal to the sum of 
them modes' probabilities of failure. 4 - 15 

P_f 
l 

32 
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The conclusion is that each mode "contributes" to the system failure like­
lihood in an almost additive way. Under these circumstances, more 
complex syst~ms can be made as safe as simple systems only if one in­
creases the individual modes' reliabilities in order to maintain the sum 
of their failure probabilities at the desired value. 

In fact, the assumption of independence of the capacities of the 
modes may not be realistic in many cases. It is true that in the "struc­
ture" in Figure 7 the foundation instability modes, Rio and R 11, which 
depend on soil properties, may be unrelated to the strength of the beam 
in bending, R1. But, the strengths of the columns and the beam may 
very well be correlated with one another because of common produc­
tion and fabrication histories. 

More directly, in some structures modal resistances may be prob­
abilistically depende·nt because they are functional1y related to the same· 
cross-section capacities. 15 - 16 Consider, for example, the three simple 
collapse modes of the portal frame in Figure 8. The first and second 
modes have resistances which could be treated as the indeterminate 
beams in Figure 4 were. But now both modal resistances· depend in part 
upon the same cross-section capacities, M2 and Ma. Given that the 
capacity of one mode is higher than average, the capacity of the other 
is very likely to be similarly located with respect to the population of 
all such modes, simply because M2 and Ma are probably greater than 
average values. Additionally, as discussed in an earlier section and 
above, the various cross-section capacities are undoubtedly correlated. 
Owing to their occurrence in the same member or in neighboring mem­
bers, they are likely to have undergone similar previous histories. 

MODE I MODE 2 MODE 3 

COLLAPSE MODES SHARING COMMON HINGES 

Figure 8. 
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If, as a limiting case, this dependence is perfect, the fact that the 
mode most likely to fail surviv,ed will imply that all others survived 
also. Then all the conditional survival probabilities of the remaining 
modes are unity. For two modes, 

p 
s 

in which P sis the smaller of the Pis· Or, in general, 15 
1 

P 
8 

= min ( P 
8 

) = 1 - max ( P_ £ ) 
i 1 

or 

33 

34 

35 

In reality the dependence among some modal resistances will be 
strong and among others it will be weak. In some cases one · might 
obtain a good estimate of the system reliability by looking first at appro­
priate groupings or sub-systems of highly dependent modes. In Figure 7 
one might group together the modal resistances one through seven, 
namely those associated with the steel frame. The probability of failure 
of such a subsystem would be very nearly the maximum of all the 
modal probabilities within the subsystem, one of the column instability 
modes, say, in Figure· 7. There may be, however, little correlation be­
tween resistances in different subsystems. Hence, the probability of 
failure of the system would be approximately equal to the sum of the 
subsystem probabilities of failure. In Figure 7, the sub-systems in 
addition to the steel frame might be the concrete footings, Rs and R9, 
and the soil instability modes, R10 and R11 • Then the system reliability 
under a given load would be approximately 

p 36 
s 
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In general, about any system or subsystem it can be stated that, 

m 

1 - L 
i=l p £ < 

i 

p < 
s 

1 - max ( P £) 
i 

37 

Again probabilistic dependence plays a key role in determining the 
safety of structures. In this case, however, a conservative lower bound 
is found by ignoring it. 

STRUCTURAL RELIABILITY UNDER 
AN UNCERTAIN LOAD 

When the load is not known to be a given value but displays marked 
variation about its central value, the results of the previous section are 
altered. In fact, they are simplified. For in this _case, even if the ca­
pacities of the various modes are independent, probabilistic dependence 
is set up among the survival events by fact that each mode is subjected 
to the same load, or same loading environment. This environmental de­
pendence15-18-19 causes the conditional probabilities such as P [2s I 1s] 
to be very close to unity, when Eq. 35 again holds: 

35 

This dependence is best understood by considering the limiting case 
when the resistances are all fixed. in value, i.e., lacking any variability. 
Then, if it is known the weakest mode survived, it is known that the 
load was less than all the resistances, implying all resistances survived. 
More generally, this condition holds in approximation when the variances 
of the resistances are small compared to those of the load. This en­
vironmental dependence operates, to a greater or lesser extent, any 
time that the load displays · some variation. The degree of its effect is 
not well understood except in the limiting case mentioned above where 
the variation in the resistances (or at least in those resistances with the 
larger P1f) is negligible compared to that in the load. 

Nonetheless, the multitude of factors causing dependence among 
the modal survival events (namely dependence among cross-section re-

l 9. Moses, F. and Kinser, D. E., "Analysis of Structural Reliability", private commu­
nications 
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sistances, dependence among modal resistances, and environmental de0 

pendence) suggests that in reality the safety of complex, multiple-mode­
of-failure systems is closer to 1 - max (Pif), the reliability of its most 
unreliable mode, than to 1 - IPif, a cumulative composite of the 
many modes of failure. The immediate design implication is that it does 
not create a significantly safer structure if one designs an already non­
critical mode to be even more conservative. The design effort should 
go into the most unreliable mode, but only until it is safer than the 
next least reliable mode of failure, when any additional expense should 
go into the latter. Readers familiar with critical path scheduling will 
note the analogy20 of this procedure with the one used in improving 
a critical path schedule. 

Combining this conclusion with the result judged to be "most com­
mon" in the section on sequences of loads, it is concluded that the re­
liability of a typical structural system over a period of n years is 

p 
s 

n 
~ 1 - n max (P ) 

.f 
1 

38 

in which the P .f are the probabilities of failure of the various modes 
with respect to a

1 
single (annual maximum) load. 

It is important to realize that these conclusions extend beyond the 
study of total collapse. A code (such as ACI 63 12) might choose to 
define as failure of the structural system the yielding or crushing of any 
cross-section of a frame. In this case, each potential yield region becomes 
a possible mode of failure. Assuming consistent levels of reliability are 
being sought from building to building, the fact that the code does not 
require higher safety factors as the number of such cross-sections in­
creases can be justified only if high dependence among survival events 
exists (i.e., only if Ps equals 1 - max (Pl) not 1 - IPif.) Unsatis­
factory performance with respect to excessive cracking or excessive 
lateral sway may be defined as a "serviceability failure" and studied in 
the same way. 21 In these situations, the determination of the proba­
bility of no failure may not be sufficient, because some such failures are 

20. Byers, William G ., private communications. 
21. Robertson, L. E., and Chen, P. W., "Glass Design and Building Code Implications 

of Recent Wind Load Research for Tall Buildings," Building Research Institute 
Fall Conference, Nov. 15-17, 1966 
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tolerable. It becomes important to estimate the number of such failures, 
for example the number of windows which might crack under high wind 
loads. If dependence is in fact high, the failure of one mode (window) 
might imply that several or many more have failed too. (Physically, 
the same extreme gust, if it occurs, is likely to break several of the 
weaker windows not just the weakest. These failure events, having been 
caused by the same gust, are not independent.) 

SUMMARY AND CONCLUSIONS 
While the effort is not exhaustive (multiple kinds of loads, for ex­

ample, are not considered), a number of the commonly stated factors 
affecting structural safety have been reviewed through elementary reli­
ability analysis. These include dispersion in strength and load, the rela­
tive influence of resistance and load uncertainty, the dead load/live load 
ratio, statical indeterminacy, the length of the structure's lifetime, and 
the complexity of the system. In most cases quantitative verifications 
have been demonstrated, along with indications as to the degree of s~g­
nificance and conditions for validity of these notions. In still other cases 
some less familiar factors, most notably probabilistic dependence, have 
been found critical. The relative variability of load and resistance var­
iation has been seen to be a significant factor in determining the degree 
to which the length of lifetime and the complexity of the structure affect 
its safety. The likelihood of a structure's failure may depend most strongly 
on its most unreliable potential mode of failure rather than on the total 
of the various modes' unreliabilities. 
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APPENDIX I - NOTATION 

The following symbols are used in this paper: 

b = positive constant 

D = dead load 

d = distance between beam supports 

KR, Ki, = constants depending on the shape of the probability dis­

tribution of R and L, respectively 

L = load 

M1A, M18 , Mic = moment capacities of the cross-sections of beams of 

A, B, and C re!lpectively 

Mi = moment capacity of cross-section i 

mA, mB, mC = mean value ofM1A, MiB and Mic, respectively 

mn, m.L, mR, ms = mean values of D, L, R and S, respectively 

' mRA' mRB' mRc = nominal or mean capacity of beams \of A, Band C 

respectively 

mx. = meanvalueofXi 
1 

n = number of loads, or time units (years, say) 

Pf = probability of failure 

P .f = probability of failure of the ith mode, or member 
1 

P .s = reliability of the ith mode, or member 
l· 

P s = reliability (probability of survival) 

P Si = probability that the structure survives i load applications 

P [s2 I si] = conditional reliability at the second load application, 

given survival on the first 

P [2s I 1s] = conditional reliability of mode 2 given survival of mode 1 

Q = R - L = safety margin 

R = capacity or resistance 
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r = ratio m0 /ms 

RA,, RB., RC = capacity of beams A, B and C respectively 
S = live load or service load 
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yA, yB, yC = coefficient of variation of M1A, MiB and Mic, respec­
tively 

Vo, Vu VR, Vx = coefficient of variation of 0, L, R and S, re­

spectively 
xi = observed value of the load 
X 1, X 2, . . . = Variables on which the cross-sectional resistance 

depends 
o :::=: oA 

oA, a·B, aC = standard deviation of MA, MB and MC, respectively 

Oo, OL, OR, Os = standard deviation of 0, L, R and S, respectively 

ORA, ORB, ORC = standard devaiation of the capacity of beams A, 

B, and C respectively. 

APPENDIX II 

It will be shown in this section that, for positive load L and resis­
tance R 2• 

p. < 
f 3 

in which KR and KL are factors, which depend on the shape of the 
probability density function of R and L, resp. 
Proof: 

(1) From the representation of the two-dimensional sample space 
(Figure 9), for any t :s;: ½ 

22. Vanmarcke, E. H., "Reliability in the Design of Structures," thesis presented to the 
faculty of the University of Delaware in partial fulfillment of the degree of Master 
of Science in Civil Engineering 
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R 

I 
I 
I 
I 
I 
I 

(mL,mRli 
mRt-----+---+-1 -~!'--­

I 

mL+½(mR-mL) 

mL+l(mR-mL) f-<--.......-~"""'"""~-"-'-+-","'h--.f-..~~~ 

SAMPLE SPACE OF LOAD AND RESISTANCE 

Figure 9. 

P = P [R - L ~ 0] = P [L > m - t(m - mL)] 
f - R R 

+ P [R < mL + t(mR - mL)] - e (t) 39 

in which 

e(t) = P[B(t)] + P[C(t)) + P[D(t)) - P[A(t)) 
40 

It follows that 

if ~ (t) > 0 41 

Note that for t = ½ ,C (t) is strictly positive, since the only negative 
term in (40) vanishes. 

Both terms on the right hand side of ( 41) can be approximated by 
conservative inequalities of the Chebychev type. 

(2) For any random variable X with mean m X and standard devia­
tion ox, and for any constant a :::;; mx 
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42 

[ 
(mx - a) 

= c x P I mx - x I ~ 
fx 

in which ex :=:; 1. If the probability density function is symmetrical 
about mx, then ex= ½. . 

Also, for any such random variable X, having a finite variance and . 
for every b ::,,. 0, the Chebychev inequality holds.23-24-5 

43 

A less conservative approximation, known as the Gauss inequality, 
applies if the distribution of X is known to be unimodal with mode 

cM..x- Then2a-24 

44 

providedb > IAxl ,whereAx = 45 

In particular, when mean and mode coincide (e.g., when X is symmetri­
cally distributed), then AX = 0, and 

46 

All these bounds can be put in the form 

47 

-:n. _ Mood, A. M., "Introduction to the Theory of Statistics," McGraw Hill, 1950 
24. Wadsworth and Bryan, "Introduction to Probability and Random Variables," 

McGraw Hill, 1960 
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in which kx = 1 corresponds to the Chebychev inequality, and 

4 (1 + .l. ~) 
k = -

X 9 A. 
(1 - ~) 2 

b 
corresponds to the Gauss inequality. 

Finally, introducing (47) into (42), with b = 

P (x < a) < 

48 

yields 

49 

In an analogous way it can be shown that, for any random variable 
X with mean mx and finite varianceol, and for any a' > mx 

50 

(3) From (49) and (50), in which a is substituted by mL + t(mR -
mL), a' by mR - t(mR - mU and X by Rand L, resp., 

p [L > m 
R 

- t(m - m l] 
R L 

+ p [R < m + t(m - m ) J 
- L R L 

2 2 
KL (J'~ + KR Q"~ 1 cLkL Q'" L + cRkR O"' R = 51 

< (1 - t) 2 (mR - mL) 2 (mR - mL) 2 -

in which 
cLkL C k 52 R R 

I<L = (1 - t) 2 KR =(l-t)2 
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Introducing (51) into ( 41) completes the formal proof of the existence 
of bound (2) for some CR, CL, kR, kL ~ 1 and some t ~ ½ . 

(4) In this section some simplified approximations for KL and KR 
are suggested for reliability practice. The value of C(t) gradually de­
creases as t decreases (see figure 9) and bound (3) becomes less con­
servative. Strong evidence suggests that (3) still holds true, when t = 0 
in (52). 

(i) When the variation of the load L is negligible compared to the 
strength variation (Oi., = 0, L = mL), then, from (49) 

53 

(ii) When the strength is a deterministic quantity (OR = 0, R = mR), 
then, from (51) 

p F = p [ L > mR J < 
54 

Thus, when either OL or OR approaches zero, (3) is seen to hold for 
values of KL = CLkL and KR = CRkR, i.e., t = 0. 

(iii) When R and L are independent random variables (as is com­
monly assumed in safety analysis), then the variance of the safety mar­
gin M =

2 
R - L, equals the sum of the variances of R and L, 

a~ = OR + al, From (49), in which X is substituted by M and a 

by 0, 2 2 
cMkM ( Q" R + Q" L) 

PF = p [M '.S, 0 J ~ (m - m ) 2 
R L 

55 

Disregarding the effect of the factors CR, CL and cM, it can be 
argued that, whenever kM ·~ kR = kL, t may again assume the value 
zero in (52). This follows from the fact that the values KR and KL 
may be chosen such that bound (55) equals bound (3). The central 
limit theorem indicates that, when L and R have unimodal density func-
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tions with skewness characteristics AR and AL, the density function of 
their difference tends to remain unimodal, but with a lower skewness 
characteristic .AM· It is precisely these skewness characteristics which 
determine the factors kR, kL and kM when the density functions are 
unimodal. In case nothing can be said about the distributations of R 
and L, then kR = kM = 1 again leads to a choice t = 0. 

Thus, substituting CL and cR by unity, their upper bound, and putting 
t = 0 in (52), the values of KL and KR, to be used in (3) become 
KL = kL and KR = kR· Note that, when the distribution of R is 
unimodal with modeJ(,R 

KR = k 
4 (l+A!) 

c:t t (1 + ). ~) R 9 

0 -'~RI_~! )2 
R L 

because in practice 

I ARI 
\mR - JtRI 

<< 
mR - mL 

= 
Q"R V'R 

Similarly, when the distribution of L is unimodal with mode-JtL 

because in practice 

K = k ':::i _! (1 + A 2 
) 

L L 9 L 

<< 
m - m R L 

(f'L 

56 

57 

58 

59 

The Chebychev inequality guarantees that the values KR and KL do 
not exceed unity. 

In summary it is suggested that Equation 3 be used with KR = 1 
if nothing is known about the distribution of R, and with Kil = i(l -i- A i } 
of R is known to have a unimodal distribution. Analogous conclusions 
hold for KL· 
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APPENDIX III 

The cross-sectional resistance R is a function of the random variables 
x. 

1 
R = R(X1, X2, Xa, ... ,) 

A multidimensional Taylor expansion about the mean value mx: is 
suggested by observing the fact that the Xi are likely to lie close1 to 
mxi if their variability is not substantial. 

Taking the expectation of both sides 

since 

E ( R) ~ R (mx , mx , 
1 2 

E(X. - m ) = 0. 
l X. 

l 

Also, since Var [ R ( mX • 
1 

60 

+ . • . 

. ) 

61 

••• )] = 0 ' 

62 

+ += ~(~~jlm)( ¥xj/mx) cov(X. , X.) 
l J 

j J 
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If the Xi are uncorrelated, then cov (Xi, X'j) = 0 (i l j), and the 
approximation is simply 

Var [R] = ~( c>R 
~ Tx. 

1 1 

63 

This result merely states that the variability .of the cross-sectional resis­
tance is the net result of contributions of variability of all related para­
meters. The contribution of each component depends on its variability 
and on its relative importance in determining the overall resistance. 


