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ABSTRACT: Methods of analysis of interconnected shear and shear 
wall-frame system subjected to horizontal static loading, are reviewed and 
summarized. All of the reviewed methods consider structures whose shear 
walls and frames form rectangular grid plans, are subjected to horizontal 
loading parallel to the grid, and undergo uniaxial displacements, also paral­
lel to the grid. 

A method based on the theorem of minimum total potential, is proposed, 
resulting in a system of simultaneous linear equations containing displace­
ments as unknowns. The method employing matrix formulation, can be 
applied in the "general c,ase" to structures undergoing biaxial and rotation­
al displacements (u, v, cf,). Only horizontal components of external static 
loads are considered, but need not be parallel. Shear walls and frames need 
not occupy a rectangular grid plan. 

KEY WORDS: analysis; biaxial displacements; frames; interaction; min­
imum total potential; review; rotational displacements; shear walls. 

INTRODUCTION 
In present building terminology, the term "shear wall" signifies a struc­

tural system in the form of walls or cores capable of withstanding lateral 
forces. Walls may be flat or curved, while cores may be of the open or 
closed box type. Cores are becoming increasingly important in contempo­
rary multistory technology because of their twofold function, namely: 
stiffening of the building against lateral loading, and providing vertical pas­
sages for services, stairwells and elevators. When shear walls act in con­
junction with beam-column frames, the resulting building behavior under 
lateral wind or seismic loading constitutes generally an improvement over 
the behavior resulting from either frames or shear walls acting alone. 

Therefore, incorporation of both structural components into the system 
appears advantageous. However, the difference in deflection characteristics 
between shear walls and frames generates an interaction affecting the sys­
tem response to direct as well as torsional loading. The latter loading can 
be generated due to nonsymmetrical loading or nonsymmetrical building 
configuration. In fact shear wall arrangements resulting in building torsion 
have been incorporated into several actual buildings,1· 2• 3 and further hypo­
thetical but possible situations have also been shown.1 

*Development Engineer, Government of Ontario, Toronto, Ontario, Canada. 
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As the effects of torsion on buildings subjected to dynamic loading be­
come apparent,4 • 5 and building codes recognize eccentricities, the ability to 
predict such torsional effects is becoming increasingly important. 
Accordingly, an investigation into the torsional analysis seems appropriate; 
and it is mainly due to this consideration that this paper was undertaken. 

The present paper is divided into three main parts. In the first, the work 
of various investigators is reviewed, and the analysis steps are summarized 
for the purpose of providing the fundamental information needed from a 
design engineer's point of view. Only a small number of papers sufficiently 
representing the analysis spectrum of systems subjected to lateral loading is 
included in this review. Since most of the published literature deals with 
static loading, only static loading papers were considered. A consideraply 
more extensive bibliography of the papers published up to 1966 is given 
elsewhere.6 All of the papers reviewed herein treat cases in which structural 
components form rectangular grid plans, and loading and displacements are 
parallel to the grid. 

In the second part of the paper, an energy method is developed applica­
ble to building systems that are non-rectangular in plan or irregular in ele­
vation; are subjected to horizontal static but otherwise irregular loading; 
and are free to undergo biaxial and rotational (torsional) displacements. A 
method is also developed for analysis for uniaxial displacements. 

In the third part, a numerical example is presented employing a Y 
shaped (in plan) low building of average complexity, acted upon by earth­
quake loading. 

PART I 
REVIEW OF METHODS OF ANALYSIS 

1. Review Objectives* 

Reviews are carried out from the point of view of providing basic infor­
mation for design purposes. Thus, the implied assumptions are revealed in 
addition to the stated ones, the analysis steps are summarized, and a broad 
view of the· applicability range of the particular method is given whenever 
possible. Comments pertaining to a particular analysis method are stated 
with the method, but comments common to two or more methods are pre­
sented at the end of this review part. 

*Doubly spaced headings correspond to italics headings of the Journal of the Structural 
Division, ASCE. 
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2. General Considerations 

A. Nature of Systems Analyzed 

Analyses have been formulated for systems consisting of (a) perforated 
shear walls constituting in fact wide column-wide beam bents, (b) two or 
more shear walls, interconnected through floor slabs or shallow beam~, (c) 
shear walls interconnected with frames. 

The various methods of analysis may be classified either according to the 
type of mathematical treatment, or according to the sssigned physical sys­
tem behavior. Classification according to the type of mathematical treat­
ment generates four principal categories as follows: (a) portal method, (b) 
differential equation methods, (c) iteration methods, and (d) simultaneous 
linear equations and digital computer methods. Classification according to 
the assigned physical system behavior produces the groups of (a) continu­
ous system methods, and (b) discrete system methods, depending on wheth­
er the stress resultants of the system are treated as continuous or point vari­
ables. The first classification system, i.e. that pertaining to the type of math­
ematical treatment, is used in the subsequent sections of this review part. 

B. Assumptions Common to All Methods 

The methods to be described are all based on a number of common as­
sumptions as follows: 

1. The system to be analyzed is linearly elastic or can be reduced into 
constituent linearly elastic systems. 

2. The principle of superposition holds. 
3. The system consists of frame and shear wall configurations lying total­

ly on vertical planes and forming in plan a rectangular grid pattern. 

4. Frames and shear walls are interconnected at floor levels by means of 
rigid floor diaphragms, except for the treatment by Goldberg23 in 
which deformable floor media are considered. 

5. The external static loads acting on the system are horizontal, parallel 
to the grid, and they are applied at floor levels. 

6. The system undergoes lateral displacements in the direction of the 
externally applied loads only. 

The additional particular assumptions, stated or implied that are applica­
ble to each method, are presented with the method description in the fol­
lowing sections of this part. 

3. Portal Method 

Green7 developed an analysis method applicable to shear wall systems 
consisting of wide column-wide beam multiple-bay bents: The method, con-
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stituting one of the earliest analysis attempts, is a modification of the classi­
cal portal method taking into account the effects of finite dimensions of 
column-beam joints. 

The additional particular assumptions used in the analysis are: 

a. Axial deformations of beams and columns are negligible. 

b. The column-beam joints are rigid rectangles of finite dimensions. 

c. Shears delivered from the beams and columns into joints are acting at 
the center of the joints. 

d. Points of inflection occur in the middle of the clear height and the 
clear span in columns and beams respectively. 

The analysis includes the effect of shear deformations of the columns and 
of course the effect of flexural deformations of columns and beams. The 
method considers a free body separated from the bent by two slicing planes, 
positioned at column midheights above and below the floor considered; and 
the analysis. is carried out on a trial basis. The method as presented by 
Green7 is limited to systems whose physical dimensions conform to the me­
chanics of analysis. Furthermore, in the analysis, the horizontal external 
load acting on the floor of the free body under consideration is neglected. 
Inclusion of this load would result in shearing stress resultants different for 
the top and bottom halves of the columns, yielding in turn, different open -
ing spacing requirements from floor to floor. In addition, the assumption of 
negligible column axial deformations should be treated with caution as ex­
plained in the discussion later in this part. The applicability of this method 
is, therefore, severely limited. 

4. Differential Equation Methods 

A. Interconnected Shear Walls 

Interconnected shear wall systems have been analyzed bv Beck,8 by 
Frischmann, Prabhu and Toppler,9 and by Rosman.10• 11 • 12 • 13 

The systems considered by the first two investigators8 • 9 consisted of two 
identical shear walls acting as parallel vertical cantilevers interconnected at 
floor levels by means of horizontal beams. The additional particular as­
sumptions used by the investigators8 • 9 are: 

a. The externally applied horizontal loading is uniformly distributed 
throughout the height of the building. 

b. Interconnecting horizontal beams are fixed at each end to the shear 
wall. 

c. Shear walls and tying beams possess constant elastic characteristics, 
and the story height is constant. 



98 BOSTON SOCIETY OF CIVIL ENGINEERS 

d. There are sufficient stories permitting localized effects to be neglect­
ed. 

e. Shear deformations of the shear walls are negligible. 
f. The horizontal tying beams possess negligible flexural stiffness as 

compared to the flexural story stiffness of shear walls; this assumption 
permits absence of inflection points in shear walls. 

g. The midspan of the tying beams coincides with their inflection point. 

h. Shear walls are fixed to a rigid foundation. 

Beck8 considered a free body obtained by bisecting the two sheiir wall 
system by means of a vertical plane passing through the midspan of the hor­
izontal tying beams. The free body is considered under the influence of (a) 
half the external horizontal loading which tends to deflect it, and (b) verti­
cal shearing forces acting on a hypothetical medium consisting of equiva­
lent laminae replacing the finite tying beams, which tend to restore it. 

The analysis takes into account the effects of (a) axial deformations of 
the shear walls, (b) shear deformations of the interconnection beams, and 
(c) flexural deformations of all components. As a starting point in the anal­
ysis, Beck8 used compatibility of deflections of the hypothetical laminae in 
the free body, and thus obtained a second order differential equation relat­
ing vertical shears of the laminae to the moment of the shear wall due to 
external loading. Solution of the differential equation yields values for the 
vertical shears in the interconnected beams, from which stress resultants in 
the shear walls and system deflections may be determined. 

Frischmann et al.9 lumped together the two shear walls into one vertical 
member whose rigidity is equal to the sum of the rigidities of the compo­
nent members. This vertical member, termed the "equivalent column", is 
considered under the influence of the deflecting total externally applied 
load, and restoring bending moments induced due to distortions of the in­
terconnecting beams. The analysis takes into account only the effect of 
flexural deformations of vertical and horizontal members. 

Frischmann et al.9 through consideration of a moment-slope relationship 
arrived at a second order differential equation relating the total moment of 
the equivalent column to the externally applied load. Solution of the differ­
ential equation yields values for the total bending moments of the equiva­
lent column, from which system deflections and bending moments in the 
interconnecting beams may be calculated. The approach used by the au­
thors9 allows extension of the method to cases of three or more intercon­
nected shear walls of different rigidities. 

Rosman 10, 11 • 12 • 13 developed solutions for two nonsymmetrical wall, and 
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three symmetrical wall configurations, subjected to uniformly distributed, 
top concentrated, and trapezoidal loads. He also considered a variety of 
shear wall support conditions. The additional particular assumptions are 
essentially similar to those used by Beck.8 Through considerations similar 
to those used by Beck, but of more general character, Rosman arrived at a 
second order differential equation relating the integral of vertical shears in 
the hypothetical laminae to the physical characteristics of the system and 
the external loading. It is worth noting that the above-mentioned governing 
differential equation can be established independently of support condi­
tions, whose characteristics are only affecting the integration constants. 

Rosman14 also discussed the possibility of solutions to systems consisting 
of four or more interconnected shear walls, by consideration of equality of 
vertical shears in the hypothetical laminae (plastic hinge formation) and 
application of the Ritz method. 

B.Shear Walls Interconnected with Frames 

Shear wall-frame systems have been analyzed by Rosenblueth and 
Holtz, 15 by Cardan, 16 and by Rosman,17 All of the above authors are basing 
their analyses on the following additional particular assumptions: 

a. Shear walls and frames possess constant elastic characteristics and the 
story height is constant. 

b. There are sufficient stories to permit localized effects to be neglected. 

c. Shear walls and frames terminate at the same floor level. 

d. Behavior of the frame under lateral loading is analogous to the behav­
ior of a discrete spring-type system, the particulars of which are dis­
cussed in the section "Discussion of Assumptions", further on in the 
paper. 

In the analysis by Rosenblueth and Holtz15 and by Cardan,16 the shear 
walls are considered as cantilevers subjected to (a) the deflecting total exter­
nal horizontal loading, and (b) restoring bending moments and horizontal 
forces induced due to deformation of the interconnected girders and frames. 
The analysis takes into account the effect of shear and flexural deforma­
tions of shear walls. The authors, 15 • 16 by consideration of flexural and 
shearing deformation relationships, arrived at a second order differential 
equation relating the total slope of the shear wall to the known external lat­
eral loading. From the solution of the differential equation, slopes and sub­
sequently stress resultants may be determined. Cardan,16 in addition to ex­
ternal uniformly distributed loading, considered the possibilities of triangu­
larly distributed load, top point load, and foundation rotation. 



100 BOSTON SOCIETY OF CIVIL ENGINEERS 

Rosman's17 analysis takes into account the effects of flexural deforma­
tions of shear walls and of rotation of their foundation. The frames and 
shear walls are considered interconnected by means of a hypothetical medi­
um consisting of equivalent laminae replacing the finite hinging inextensi­
ble links. An expression of the total strain energy of the system is formulat­
ed and, through the application of calculus of variation, a differential equa­
tion is established relating the bending moment in the shear wall to system 
characteristics. Uniformly and triangularly distributed lateral loadings are 
considered. 

5. Iteration Methods 

Iteration analyses have been applied to shear wall-frame systems by 
Rosenblueth and Holtz/5 by Khan and Sbarounis,18 and by Khan.19 

In the analysis of Rosenblueth and Holtz15 the shear walls are considered 
as cantilevers ~ubjected to external deflecting and internal restoring loading. 
The authors' 15 analysis is based on the following additional particular as­
sumptions: 

a. Shear walls and frames possess constant elastic characteristics. 

b. The behavior of the frame under lateral loading is analogous to the 
behavior of a discrete spring type system. 

c. The frame columns exhibit negligible axial deformation. 

The analysis of the authors15 takes into account the effects of (a) shear 
and flexural deformations of the shear walls, and (b) variations of story 
height. The iterative process consists of the following operations: 

1. Initially, a trial slope distribution is assumed. 

2. On the basis of the above slope distribution, the shear taken by the 
frame is calculated and subtracted from the known external lateral 
shear to give the shear taken by the shear wall. 

3. The wall shear is integrated and the resultant moment is combined 
with the bending moments induced due to deformation of the inter­
connecting girders, thus yielding the resultant bending moment on the 
shear wall. 

4. The resultant bending moment is divided by the flexural rigidity El of 
the shear wall, and integrated to give the calculated slope distribution 
which is comp~red to the slope distribution assumed at the beginning 
of the cycle. 

5. Subsequent iteration cycles are then performed until the assumed and 
calculated slope distribution are within acceptable bounds. 
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From the finally established slope distribution, deflections can be evalu­
ated by intergration, while stress resultants of shear walls and frames will be 
those pertaining to the last cycle of iteration. 

F. Khan and J. Sbarounis18 followed a different and more generalized ap­
proach. The analysis of the authors18 is based only on the common assump­
tions cited at the beginning of this part. The analysis takes into account the 
effects of (a) shear deformations of shear walls and axial deformations of the 
frame column, (b) flexural deformations of all components, (c) plastic hinge · 
formation in the shear walls, (d) foundation rotation, and (e) variation of 
story height and system characteristics from story to story. 

The iterative process is carried out as follows: 
I. Initially the known external horizontal loading is applied to the shear 

wall and its deflected shape computed. 
2. The forces required to hold the frame in a deflected configuration con­

forming to that of the shear wall are calculated and applied to the 
shear wall. 

3. The horizontal deflections of the shear wall due to the above set of 
forces are then determined and combined with those determined in 
step I, yielding resultant deflections. 

4. The above operations constitute the first cycle of iteration. 
Initial deflection values to be used in subsequent iteration cycles are giv­

en by forced convergence formulas. 
According to the authors18 the iterative process requires three to twelve 

cycles depending on the frame to wall stiffness ratio. Deflections and stress 
resultants of the system are those pertaining to the last cycle. 

The authors18 presented a large number of graphs from which a quick 
evaluation of shear wall and frame shears and deflections can be made for 
preliminary designs. The method appears to be of sufficiently broad charac­
ter to cover a variety of actual building configurations. 

Khan19 carried out an analysis pertaining to the interaction of shear walls 
rigidly interconnected to perpendicular frames, with the system being sub­
jected to lateral loading acting on the plane of the shear wall. An iteration 
is performed on principles similar to those used by Khan and Sbarounis18 

in order to determine the effective column area to be considered as the 
flange of an I beam whose web is simulated by the shear wall. The method 
takes into account the effect of axial deformations of the columns, and flex­
ural and shear deformations of the spandrel beams. Naturally the flange 
contribution is significant for relatively stiff spandrel beams, and in those 
cases its effect should definitely be included in the analysis. 
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6. Simultaneous Linear Equations and Digital Computer Methods 

Analysis methods in this category have been presented by Gould,20 

Clough, King and Wilson,21 and Goldberg.23 

Gould 20considered the shear walls as cantilevers subjected to the forcing 
loading of the external forces, and to the restoring loading of the intercon­
nected frames. The author's 20analysis is based on the following additional 
particular assumptions: 

a. The shear deformations of the shear walls and axial deformations of 
the frame columns are negligible. 

b. The behavior of the frame under lateral loading is analogous to that of 
a discrete spring type system. 

c. There are sufficient stories to permit application of the finite difference 
method. 

The analysis takes into account the effect of (a) flexural deformations of 
the system, and (b) variation of story height and system characteristics from 
story to story. In the analysis, either a fourth order differential equation, or 
a second order differential equation relating deflections to loading or mo­
ment, are employed, depending on their adaptability to the particular struc­
tural system. 

The differential equations are modified to contain only horizontal deflec- . 
tions as unknowns. One differential equation can be written for every floor 
level resulting in a system of linear equations. A computer solution of the 
linear system appears to be advantageous, and from the determined deflec­
tions stress resultants of the system may be computed. 

Clough et al21 presented a digital computer analysis applicable to large 
multistory buildings containing shear walls and frames, interconnected in 
planar arrays, and subjected simultaneously to lateral and gravity loads. 
The authors'21 method constitutes an extension of a previous presentation22 

in which no shear walls were included. The analysis is only subject to the 
common assumptions cited at the beginning of this part, and it takes into 
account the effects of (a) axial and shear deformations of sheer walls and 
frame columns, (b) shear deformations of the frame beams, and (c) flexural 
deformations of all components. 

The analysis consists of the following operations: 
1. The building is sliced vertically down into parallel planar arrays and 

the stiffness of each array to lateral loading is determined. 

2. The arrays are reassembled into the original building form, giving by 
superposition the total lateral stiffness of the building. 
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3. From the known lateral loads and building lateral stiffness, the lateral 
displacements and stress resultants in the members are determined. 

The lateral stiffness of the array outlined in step 1 above is determined as 
follows: 

1. A loading-displacement relationship is established for the array re­
sulting in a matrix equation relating gravity and lateral forces to rota­
tional, vertical, and translational displacements. 

2. The rotational and translational displacements are eliminated from 
the array loading-displacement relationship, yielding the lateral frame 
stiffness and the lateral forces necessary to keep the frame unswayed 
while subjected to gravity loading. 

The method appears to be advantageous for cases in which sidesway ef­
fects resulting from gravity loads are not negligible. The method can be 
improved to take into account the eccentric effect of girder shears acting on 
the face of finite width shear walls, by introducing the concept or rigid gus­
set extensions as proposed by MacLeod.24 Interconnected shear wall sys­
tems can then be treated on the same basis as above. 

Goldberg23 considered long narrow multistory buildings containing shear 
walls and frames and subjected to lateral loading. The analysis is subjected 
to the common assumptions cited at the beginning of this part with the ex­
ception of the rigid floor diaphragm. Thus, the analysis takes into account 
the effects of (a) flexural and shear deformations of floor slabs and shear 
walls whether in the form of flat or ribbed plates, and (b) flexural deforma­
tions of frame columns and beams. Essentially, the following operations are 
performed: 

1. Moment and shear balancing equations are established for every shear 
wall-floor slab and frame-floor slab intersection. 

2. The unknown moments and shears are then replaced by equivalent 
slope deflection expressions containing rotational and extensional 
displacements as unknowns. A system of matrix equations is thus 
obtained. 

3. The system is solved through elimination by substitution, yielding 
rotational and extensional displacements. 

Stress resultants may be obtained by substitution of displacements into 
the appropriate slope deflection equations. The method is capable of being 
extended to include secondary effects as well as treatment of nonsymmetri­
cal buildings and loadings. 
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7. Further Analysis Considerations 

Barnard and Schwaighofer27 undertook model studies to determine the 
coupling effectiveness of a system consisting of two shear walls intercon­
nected solely through a floor slab. For the particular configuration studied it 
was concluded that for a continuous system analysis of the Beck or Rosman 
type, the total slab width is effective as an interconnecting beam, although 
criticism has been raised.28, 29 

Michael3° showed that in systems consisting of wide shear walls intercon­
nected through "non-shallow" beams, the effective beam span to be used in 
the analysis is equal to the physical clear span plus the beam depth. Such 
span increase, due to wall-beam interaction, appears to be mostly signifi­
cant for cases of small beam span to depth ratios. 

8. Discussion of Assumptions 

A. Common Assumptions 
All of the common assumptions presented in section 2.B of the present 

part appear realistic and attainable. In particular, the assumption of rigid 
floor diaphragms appears realistic for square, or nearly square, floor plans. 
For floor plans in the form of a rectangle (ratio of sides of 3 or over) it has 
been shown23• 25 that neglect of a floor plate deformations leads to consider­
ably underestimated horizontal deflections and causes upsetting of the dis­
tribution of horizontal shears between frames and shear walls. Such discre­
pancies between the results based on a rigid or non-rigid floor plate natural­
ly become smaller for the most favorable shear wall-frame relative posi­
tions, and vice versa. 

B. Particular Assumptions 
The particular assumptions that have been most commonly encountered 

in the preceding analysis methods are discussed briefly. 
B. 1 Assumption of Constant Characteristics 
In most medium height buildings (eight to fifteen stories), and almost all 

tall buildings (over twenty stories), the rigidity of the columns and bearing 
shear walls is decreased with increasing floor level, due to reduction in 
member load carrying capacity. In addition, there are variations in story 
heights between the first few and the typical stories, dictated by architectur­
al and utilitarian considerations. Moreover, special structural features, al­
though predominant in typical floors, are absent in the floors at or near 
ground level. It, therefore, appears that the assumptions of constant charac­
teristics and constant story height must be introduced with caution. 
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B. 2 Assumption of Discrete Spring System Frame 

A discrete spring type system is, for the purpose of this investigation, 
considered to consist of the assembly shown in Fig. 1, originally introduced 
by Gould.20 To test the validity of this assumption, the frame section shown 
in Fig. 2 was used to determine the load-displacement relationship. 

The frame pertains to a building with a spandrel beam to column stiff­
ness ratio of 3. Relative reaction values as determined by analysis as well 
as those pertaining to the discrete spring type system are shown in Fig. 2. 

It is seen that a sizeable difference exists between the two sets of forces. 
It, therefore, appears that the analogy of a discrete spring type system is 
only justified for high spandrel beam to column stiffness ratios. 

B. 3 Assumption of Negligible Axial Deformations 
MacLeod24 has shown that for stiff interconnecting beams, neglect of 

axial deformations of the shear walls leads to significantly underestimated 
horizontal deflections and moderately overestimated shears in the connect­
ing beams. Rosman12 has also emphasized that neglect of axial deforma­
tions especially in high, interconnected shear walls, leads to erroneous re­
sults. Bandel26 has shown that neglect of axial deformation, in the columns 
of narrow tall frames leads to considerably underestimated deflections. 
Therefore, it appears that the assumption of negligible axial deformations 
becomes unreliable under certain conditions; however, no general criteria 
regarding the range of applicability of this assumption have been esta­
blished. 

9 Method Evaluation 

Differential equation methods are relatively easy to manipulate, in gener­
al do not require computer facilities, and inherently yield results in a for­
mulated manner. However, they require imposition of limiting assumptions 
which may result in misrepresentation of the state of stress and deformation 
of the system. Their use is recommended only for cases of multistory build­
ings in which variations of system characteristics are kept at a minimum. 

Iteration methods allow complete freedom in variation of system charac­
teristics and loading, but they are also subject to judicious assumptions re­
garding the grouping together of frames and shear walls for easier manipu­
lation. The possibility of arithmetical errors is kept at a minimum through 
step by step comparisons. However, methods in this category are laborious 
and unless quick convergence is obtained, manual manipulation of the op­
erations appears to be of little merit. Digital computer methods inherently 
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FLEXIBLE SPRINGS 

RIGID BARS 

HINGES 

Fig. I - Discrete Spring Type System 
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F = FORCES DE TE RMI NED BY ANALYSIS 

P= FORCES ASSUMED IN DISCRETE SPRING TYPE SYSTEM 

Fig. 2 - Determined and Assumed Forces in Typical Frame Action 
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allow extensive flexibility in system characteristics. However, one may be 
faced with the lack of a suitable program, excessive programming and proc­
essing costs, or even limited computer capacity. 

PART2 
METHOD OF ANALYSIS FOR BIAXIAL AND 

ROTATIONAL DISPLACEMENTS 

I General Considerations 
The method of analysis presented in this paper is based on the theorem 

of minimum total potential,31 · 32 and it results in a system of simultaneous 
linear equations for displacements. Computational work at various stages of 
the analysis may be carried out by means of a slide rule, desk calculator or 
digital computer, depending on the size of the work and the accuracy re­
quired: 

2 Assumptions and Limitations 
The proposed method is based on the following assumptions and limita­

tions: 
1. The structure may contain any number of shear walls and frames 

which remain linearly elastic during deformation. Formation of plas­
tic hinges may be taken into account by reducing the original structure 
to constituent linearly elastic systems. 

2. Foundations of the structure may rotate in a linearly elastic manner. 
3. Frames and shear walls are interconnected by means of floor dia­

phragms which are extensionally rigid in their own horizontal plane, 
but flexurally or torsionally flexible about horizontal axes lying in 
their plane. 

4. External loads acting on the system are horizontal and are applied 
only at floor levels. 

3 System Characteristics 
A building containing several shear walls and frames arranged in a non­

rectangular grid is shown in Fig. 3. For purposes of identification, frames 
and shear walls are assigned characteristics fl, f2 etc. and wl, w2 etc., in a 
prescribed order. In formulating one class (?f energy equations, columns are 
considered as isolated elements regardless of whether or not they belong to 
frames, and thus they are also assigned characteristics c 1, c2 etc. 
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w,, SHEAR WALLS 

f • FRAMES 

f = EXTERNAL FORCES 

Fig. 3 - Shear Walls and Frames in N onrectangular Grid 
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The building is subjected to external horizontal loads F, which for the 
case of wind loading will act perpendicularly on its faces. The resultant wind 
force on each face may be located at a position other than the center of the 
face, and the resultants pertaining to each floor level on the same face do 
not have to lie on the same vertical line. 

For purposes of analysis, the building is assumed to undergo successive 
displacements; the position of each of the building floors can then be speci­
fied as shown in Fig. 4 in terms of (a) rotational displacements about a 
specific point C in the plane of the floor, and (b) translational displacements 
u and v with respect to a fixed coordinate system XOY. Points C for the 
various floors lie on the same vertical line. 
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C 

Ly~~ ----
~ -- --(FOSITION 1 

o X ~ -t_ FOSITION 0 

Fig. 4 - Successive Floor Displacements 

4 Considerations for Shear Walls 
A. Kinematic Relationships 
The displacement of shear wall w2 shown in Fig.3 is considered in detail. 

It is assumed for simplicity that the shear center and center of rotation of 
the wall cross-section coincide with its centroid. 

Rotation of the wall centroid about point C, as shown in Fig. 5, and sub­
sequent translation from position 1 to position 2 as shown in Figs. 4 and 6, 
will cause displacements given by 

u' = (r sin 0) </> + u ............................. (la) 



C 

II 
u 
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y 

~ POSITION. 1 

+--POSITION. 0 

Fig. 5 - Shear Wall Displacements Due to Rotation 

POSITION 2 

I 

V 

0 
Fig. 6- Shear Wall Coordinate Transformation 
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v'= - (rcos8) </> +v ........................... (lb) 

<1>'= </> •••···••··•·····•··••·••··••·•··•··••·· (le) 

in which r is the distance from point C to the centroid of the wall; (J is the 
angle between r and OX axis. 

Transforming displacements u', v', cf,' into displacements u", v", cf, " per­
taining to the principal axes of the wall as shown in Fig. 6, gives 

u'' = au + bv + c</) . • . . . . . • • . • . • • . . . . • . . . • • . . • . . . • (2a) 

" v = - bu + av - d</> (2b) 

" </> = .- </> . . . . . . . • . . . . . . . . . . . • . . . . • . . . . . . . • . . • (2c) 

in which a, b, c, d designate the quantities cos/3, sin/3, r sink, r cosk re­
spectively; f3 is the angle between coordinate systems XOY and X"OY"; k 
is the difference between angles (J and /J. 

Since the quantities r are identical, and the quantities f3 and k are practi­
cally identical for all floors, the constants in Eqs. 2 are practically identical 
for all floors. 

B. Energy Relationships 

The strain energy stored in the shear wall is due to biaxial translational 
and rotational displacements. 

The stiffness equation for a cantilever structure is given by 

{PW}= [AW] {uW} ........................... (3) 

in which { Pw} and {uw} denote the column matrices of load and dis­

placement respeatively; [Aw) denotes the stiffness square matrix. 
Coefficients of the stiffness matrix include the effect of shear as shown in 

Appendix I. The strain energy { uw} of the structure is given by 

{ uw} = ~ [ uf J { pw} .. .. .. .. .. .. .. .. .. .. .. (4) 

in which { uw} is the strain energy in the form of a lxl matrix; [ uf J is 
the row vector of displacements. 

Combining Eqs. 3 and 4, considering that the stiffness matrix is symme­
tric,33 and differentiation of both sides of the resultant equation, the follow­
ing is obtained. 
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The implication of the above equation is noteworthy: the first derivative 
of the strain energy matrix for a cantilever structure, is equal to the stiffness 
matrix postmultiplied by the displacement column matrix. Applying Eq. 5 
to the particular case of the shear wall, undergoing biaxial and rotational 
displacements gives 

{ v"} (Sb) 

(Sc) 
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in which { uJ } , { u; , { u; } are the strain energy column matrices of 

shear wall due to rotational displacements and translational displacements 

parallel to OX" and OY" axe~; respectively; [Cw], [Aw], [Bw] denote the 
respective stiffness matrices. 

The total strain energy stored in the shear wall is given by 

{ u;} = {u;} + {ub} + {u;} ............. (6) 

Differentiating { u;} with respect to u, v and </> gives 

_!_ = __ a ~ + _b_ ~ ......... (7a) 
{

auw} {auw} { "} {auw} { "} 
au au" au av" au 

_! = __ a ~ + __ b_ ~ ......... (7b) 
{

auw} {auw { ,, } {auw1 { "} 
av au" av av" av 

Combining Eqs. 7a, 5a, 5b, 2a and 2b 

Introducing Eqs. 2a and 2b into Eq. 8a rearranging, and abbreviating the 
resulting matrix sums by. 

a2 [Aw] + b2 [Bw] = [Kf] ................... (8b) 

................... (8c) 

.................. (8d) 
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The following is obtained r~:} a [K7 I {u} + [L7I (,) + [Mr I (</>} ... (9) 

Combining Eqs. 7b, Sa, Sb, 2a and 2b 

lauw l l a } ) = b [Aw ] { u } + a [ B w ] { v" } . . . . . . . . . . . (I 0) 

Introducing Eqs. 2a, 2b into Eq. lo, rearranging and then introducing 
the abbreviations 

bc[Aw] -ad[Bw] = [M;] ..................... (llc) 

Eq. 10 becomes 

in which 

(14b) 
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Eqs. 9, 12 and 13 have been derived for only one shear wall; they can be, 
however, considered as including all shear walls of the building, if the com­
bined stiffness matrices [K], [L], [M] are extended to include stiffness 
matrices for all shear walls. 

5 Considerations for Frames 

A. Kinematic Considerations 
The displacement of frame fl shown in Fig. 3 is considered in detail. 

Firstly the frame centroid at a floor level is rotated about point C, moving 
from position Oto position I as shown in Fig. 7. This movement will cause 
rotational and translational displacements of the frame centroid. The frame 
is then translated from position 1 to position 2 in accordance with the trans­
lations of the rigid floor diaphragm shown in Fig. 4. Position 2 of the 
frame is shown in Fig. 8, in which also are shown the displacements u" and 
v" pertaining to longitudinal and transverse axes of the frame. Consideration 
ot the total movement of the frame would indicate that the frame undergoes 
two types of displacement: (a) a displacement in which the frame moves in 
the direction of its horizontal longitudinal axis, (b) a displacement in which 
each column of the frame moves in the direction perpendicular to the frame 
horizontal longitudinal axis. 

The first type of displacement being similar to that encountered in the 
previous section, is termed frame action displacement. 

In the second type of displacement the columns behave as individual 
elements coupled to each other by means of spandrel beams. If the torsional 
stiffness of the spandrel beams is negligible, the columns can be treated in a 
manner analogous to that used for individual shear walls. This type of dis­
placement is termed cantilever action displacement. 

B. Frame Action Energy Relationships 

The component of displacement parallel to the frame longitudinal axis is 
given by Eq. 2a and is designated by u" in Fig. 8. Energy relationships for 
the frame can be established from the previously established relationships 
for the shear wall. Thus the following relationships can be set up analogous 
to Eq. 9 by setting [Bw]'== 0 

f 

la 0 r l r r r l ~~ = [K1 ] {u} + [L
1

] {v} + [M 1J{t>5 ........... (15) 
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y 

POSITION 2 

Fig. 7 - Frame Displacements Due to Rotation 
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I 

SITION 0 
1-!----..,,,c.....-1---1-p.......,...;~~--=,r=UM N c 

Fig. 8 - Frame Coordinate Transformation 
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Similarly from Eq. 12 by setting [B w] = 0 

f 

r:yT.( = [K~] lu~ + [L~]lvf+TM~]l¢f ........... (16) 

w w 
And from Eq. 13 by setting [B] = [C] = 0. 

f 

r~T( = [K~] lu} + [L;] lv} + [M~]l<P~··········· (17) 

I 19 

Eqs. 15, 16, and 17 have been derived for only one frame; they can how­
ever be considered as including all frames of the building, if the combined 
stiffness matrices [K], [L], [M] are extended to include stiffness matrices 
for all frames. 

C. Cantilever Action Energy Relationships 

The strain energy stored in the column is due to translational displace­
ments in the direction of the transverse frame axis shown in position 2 in 
Fig. 8. The strain energy due to column torsion is neglected in the present 
analysis. 

Column c shown in Fig. 7 is chosen in exemplifying the energy relation­
ships. By reference to Figs. 7 and 8, and by analogy to Eq. 2a, the displace­
ment in the direction of the transverse frame axis is given by 

u111 = (sin~)u +(cos~)v-r(cosk) ¢+ f.c ¢.............. (18) 

in which f c is the distance from the frame centroid to the column cen­
troid. The above relationship is of the form 

u ill = au + bv + ccp (19) 

Since the total strain energy in the column is due to uniaxial translations, 
energy relationships can be obtained from the corresponding relationships 
for a shear wall by setting [B] = [C] = 0. 

Thus, by analogy to Eqs. 9, 12 and 13 
auc l auT ( = [K~] lu} + [L~] ~v~ + [M~] l1f .......... (20) 
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in which { U~} denotes the total strain energy stored in the column. Eqs. 

20, 21 and 22 have been derived for only one column; they can however be 
considered as including all columns of the building if the combined stiffness 
matrices [K], [L], [M] are extended to include stiffness matrices for all 
columns. 

6 Potential of External Loads 

Load F 1.n acting on face 1 at the nth floor of the building, as shown in 
Fig. 3, is chosen to exemplify the pertinent relationships. For the above 
particular building face and floor level, the potential is given by 

V l .n = - ul~ .n Fl .n . . . . . . . . . . . . . . . . . . . . . . . . . . . (23) 

in which u ~ .n is the displacement of the point of application of the load 

in the direction of the load. Since the displacement u ~ .n can be expressed 
as a function of the type of Eq. 2a, Eq. 23 becomes 

V 1 = -(a
1 

un+b 10 v + c1 ¢ )F
1 

......... (24) .n .n . n .n n .n 

in which the constants a b c refer to the coordinate transfor-1.n' l.n' l.n 
mation XOY X"OY" such that the positive direction of the OX" axis coin­
cides with the direction of the load as shown in Fig. 9. 

Differentiating Eq. 24 with respect to Un 

av l.n 
= - a I FI . . . . . . . . . . . . . . . . . . . . . . . . . (25) 

.11 .11 
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Fig. 9 - Force Coordinate Transformation 
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Considering expressions similar to Eq. 25 for all floors of the building at 
face I 

av1.2 
au;--

= . . . . . . . . . . . . . . . (26) 

av
1 .p 

~ a1 F .p l .p 

Setting Eq. 26 in matrix form 

) aavul l 1 ) = - { a I. F 1.} ............................ (27) 

Considering potential relationships similar to Eq. 2 7 for all faces, I to 7, 
of the building, grouping together and replacing the matrix sums by equiva­
lent matrices 

(28) 

in which VT is the potential due to all loads acting on the building. 
Establishing relationships similar to Eq. 28 for displacements v and </> 

{aavvTl. ) = - { bF} (29) 

laa:'!:J t o/ ) = - { cF} ............................. (30) 
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7 Application of Minimum Total Potential Theorem 

According to the minimum total potential theorem, at equilibrium 

taa~Tr + ta~L} = o ....................... (31a) 

taa~Tt + { ::T} = 0 ..................... (31b) 

ta~Tt + ta~T} = o ....................... (31c) 

123 

Since UT and VT in the above equations refer to the entire sustem, the 
following relationships exist 

{ aauur) = { aauu; ) + f aauu~ l + { aauu~ l 1 .. . .. . . . . . .. . . . (32a) 

Combining Eqs. 9, 15, 20, 28, 3 la and 32a 

([K7] + [K;] + [K~]){u} + ([L7] + [L;] + [L~]) {v}+ 

([M7] + [M;] + [M~]) {<t>} = {aF} .................... (33) 
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Abbreviating the matrix sums in Eq. 33 

[Kil ~u~ + [L~l jvf + [Mil j¢f = ~aFf ........... (34) 

By an analogous process combining Eqs. 12, 16, 31 b, 32b, 29 and 21 

[K;l juf + [L~l ~vf + [M;l j¢~ = jbF~ ........... (35) 

Similarly, combining Eqs. 13, 17, 22, 30, 31 c, 32c and 22 

[K; l ju ~ + [L; l ~ v f + [Mj l j ¢ f = ~ cF f .. .. .. .. .. . (36) 

Solution of the system of Eqs. 34, 35 and 36 will yield values for the dis­
placements u, v and ¢. 

The forces necessary to keep the structural systems of the building in the 
known deflected configuration can then be computed from the pertinent 
stiffness equations. Stress resultants can then be determined by convention­
al means from either the known displacements or computed forces. 

METHOD OF ANALYSIS FOR UNIAXIAL DISPLACEMENTS 
A structure is considered that consists of planar arrays of shear walls and 

frames as shown in Fig. 10 and incorporating the following characteristics: 
(a) interconnecting links may be omitted from several floor levels, (b) exter­
nal loading may be applied on each shear wall and frame individually. 
Frames are characterized by fl, f2 etc., and shear walls by w 1, w2 etc. 
Floors are numbered as follows: 

The floor levels of the first system proceeding from left to right are as­
signed Arabic numerals increasing from bottom to top, and all floor levels 
of system 1 are included in this operation. Then, system 2 is inspected 
starting from the lowest floor and proceeding upward. The floor levels of 
system 2 that are interconnected with system 1 are assigned the same nu­
merals as those for system 1 while each encountered level which is not in­
terconnected to system 1 is assigned the next numeral in the series. System 
3 is treated relative to system 2 in the same manner that system 2 was treat­
ed relative to system 1. 

Externally applied forces are then assigned the superscript pertaining to 
the system, and the subscript pertaining to the floor level. Floor level dis­
placements are assigned the subscript pertaining to the level in question. 
The complete column matrices of externally applied forces and displace­
ments for the system combination 1 + 2 + 3 are given by 



/1 
5 

fl 
f4 

f1 
f3 

ffl 
2 . 

ffl 
1 
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Ffl 
I 

Ffl 
2 

+ Fwl 
2 

+ Ff2 
2 

Ffl 
3 

+ Fwl 
3 

+ Ff2 
3 

Ffl . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . (37a) 
4 

Ffl 
5 

__,._. 

--. 

---+ 

---+ 

-+ 

Fwl 
6 

Ff2 
+ 6 

Fwl 
7 

+ Ff2 
7 

U5 

U4 

U3 

u2 

u1 

SYSTEM 1 
FRAME. fi 

fwl 
U7 7 ➔ u 

7 

wl 
U3 F3 U3 

U2 .fwl 
2 u2 

1 
U5 fw ➔ u6 6 

SYSTEM 2 SYSTEM 3 
SHEAR WALL W1 FRAME !2 

Fig. IO - Generalized Planar Arrays 

--. l2 
7 

---+ l2 
3 

---. f2 
f2 

--+ f2 
f6 
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U1 

U2 

U3 

..................................... (37b) 

U5 

Establishing an equation for frame fl analogous to Eq. 5 

.......................... (38) 

in which~ JI ~ is the column matrix of displacements for frame fl only. 
Eq. 3 8 can be modified to 

{"a:1-} = 0/11 juf............................... (39) 

in which [ A fl] , resulting from [ A fl ] by the introduction of appropriate 
zero elements, corresponds to the complete displacement column matrix 

{ u} . Establishing expressions similar to Eq. 39 for shear wall wl and 

frame f2 and combining thein with Eq. 39 gives 

(40) 
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in which U is the total strain energy for the combined system 1 + 2 + 3 
and 

Applying Eq. 27 to frame fl 

{avfl} = _ {Fn} 
a/I 

( 41) 

Eq. 41 can be modified as 

~t} = ··· {Ffl} ................................ (42) 

in which {r fl} , resulting from { Ffl} by the introduction of appropriate 

zero elements, corresponds to the complete displacement column matrix 
given by Eq. 37b. Establishing expressions similar to Eq. 42 for shear wall 
wl and frame f2 and combining them with Eq. 42 

{:~} •. {F} .................................. (43) 

in which V is the potential for the combined system 1 + 2 + 3, and { F} 
is given by Eq. 37a. 

Applying the theorem of minimum total potential to Eqs. 40 and 43 

[AJ{u} = {r} ................................ (44) 

Solution of Eq. 44 will give the complete set of horizontal displacements, 
from which the forces necessary to keep the system in the known deflected 
configuration and stress resultants can be computed. The method can be 
applied to any structure regardless of number of systems and floors. 

The effect of foundation rotation rotation may be treated by the introduc­
tion of a member of equivalent stiffness, as is outlined in Reference 18. 

The effect of plastic hinge formation may be taken into account by re­
solving the structure into two or more constituent systems. In the first, the 
structure is assumed to consist of the original material behaving in a linear­
ly elastic manner up to the point of the first plastic hinge formation. In the 
second constituent system, the plastic hinge is replaced by an equivalent 
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hypothetical linearly elastic material. Determination of the stiffness matrix 
of both systems must be carried out. Resultant action of the original struc­
ture can be obtained by superposition of the results of the two constituent 
systems. 

Formation of more than one plastic hinge can be treated in a similar 
manner. 

PART3 
NUMERICAL APPLI(:ATION 

1. System Characteristics 

A four story building, having a plan configuration as shown in Fig. 11, 
was analyzed for earthquake loading acting in the OX direction. The num­
ber of stories was chosen deliberately small in order to keep the computa-

1 

0 
N 
N 

l"\.LINE OF' SYMMETRY 

Fig. 11 - Example Building- Floor Plan 

q 
N 
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6 

Fig. 12- Example Building- Reference Systems 
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tions in a manageable space. The building is of reinforced concrete, waffle 
slab construction. The core is 10 in. thick and the columns 15 in. square. 

The perimetric spandrel supporting the floor is 6.0 ft. deep and 12 in. wide, 
yielding (1/L) spandrel/ (1/L) column -:::: 25, and therefore justifying the as­
sumption of discrete spring type systems for the perimetric frames. The first 
story is 13.3 ft. high and the remaining stories are 11.3 ft. high. Core and 
perimetric frames are resting on a rigid diaphragm at the first floor level. 

The total lateral force was calculated as 560 kips, which is 0.057 of the 
total building weight. In applying the lateral loading, the center of stiffness 
was arbitrarily assumed at the center of the core and the center of mass was 
located by calculations at 50.0 feet from it. This is the point at which later­
al forces F are applied as shown in Fig. 12. This apparent eccentricity thus 
exceeds 25% of the 112.0 ft. lateral building dimension; the effects of tor­
sion were therefore doubled (according to recommendation of the current 
National Building Code of Canada) by doubling the total lateral force to 
l, 120 kips. The individual lateral forces were calculated according to a 
formula of the above Code and are shown in Table 2 below. 

The flexural rigidity EI of the core and columns was calculated as 
1.5(109) kip-ft. 2 and 1.3(105) kip-ft. 2 respectively. 

The following assumptions were made in the analysis: 
l. Floor plates are extensionally rigid in their own plane, but flexurally 

or torsionally flexible about horizontal axes lying in their plane. 

2. Lateral forces are horizontal and are applied at floor levels. 

3. The torsional rigidity of the core and the torsional and transverse rig­
idities of the columns are negligible. All axial deformations are negli­
gible. 

4. Shear deformations are effective for the core but negligible for the 
columns. 

5. The effective height for flexure in the columns is the story height mi­
nus the spandrel depth. 

The structural system is sectionalized into eight stiffness elements cons­
isting, of the core and column groups. Each element is given a characteristic 
number, as shown in Table 1, which is used as an identifying subscript in 

subsequent development. Individual coordinate axes systems X1 
0 n y" 

(subscript n denotes the element characteristic number) are assigned one to a 
stiffness element as shown in Fig. 12 in which also is shown the center of 
rotation C for each floor plate. 
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TABLE 1. IDENTIFICATION OF STIFFNESS ELEMENTS 

Stiffness Element 

Core 

FCC* C1, C1s 

FCC C2, C3, C4, Cs 

FCC Cs, C6, C1 

FCC C1, Cs, C9 

FCC C10, C11, C12 

FCC C12, C13, C14 

FCC C14, C15, Cm, C11 

*FCC = Frame comprising columns 
**Columns are shown in Fig. 12 

Characteristic Number 

1 

2 

3 

4 

5 

6 

7 

8 

131 
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Stiffness matrices bearing the stiffness element characteristic number as 
subscript are shown below. Stiffness matrices for the core incorporate the 
effect of shear and were computed by the "STRESS" computer program. 

[ 1.588 -1.253 0.161 
0.090] 

[Ai] [Bi] 
-1.253 2.229 -1.380 0.270 = = -0.913 · .. <45) 0.161 -1.380 2.097 

0.090 0.271 -0.913 0.532 

[ 0023 -0.020 0 

J.020] ... (46) [A2] = -0.020 0.040 -0.020 
0 -0.020 0.040 
0 0 -0.020 0.020 

[ 0.047 -0.-41 0 

J.041] ... (47) [Aa] = [As] = -0.041 0.082 -0.041 
0 -0.041 0.082 
0 0 -0.041 0.041 

t 0035 
-0.031 0 

0 ] [A4] = [A5] = -0.031 0.062 -0.031 
-~.031 ... (48) [A6] = [A1] = 0 -0.031 0.062 

0 0 -0.031 0.031 

Measured quantities /3, r, k and calculated quantities a, b, c, dare shown 
in Tables 2 and 3. 

TABLE 2. CONSTANTS OF FORCE SYSTEM 

Floor Force /3 k r 
b 

C 

Level (kips) (degrees) (degrees) (ft.xl0-6) 
a (ft.x 1 o-6) 

2 112.0 

3 224.0 

4 336.0 0 270 34.(106) 1 0 - 34.(106) 

Roof 448.0 
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TABLE 3. CONSTANTS OF STIFFNESS ELEMENTS 

Stiffness 
Element B k r 

b 
C d 

Characteristic (degrees) (degrees) (ft.xl0-6 a (ft.xI0-6) (ft.xI0-6) 
Number 

1 0 270 83 .(106) 1 0 -83.(106) 0 

2 0 270 87.(106) 1 0 -87.(106) 0 

3 135 82.5 62.5(106) -0.707 0.707 62.(106) 8.( I 06) 

4 45 135 54.5( I 06) 0.707 0.707 38.5(106) -38.5(106) 

5 135 45 24.(106) -0.707 0.707 17.(106) 17.(106) 

6 45 315 24.(106) 0.707 0.707 -17.(106) -17.(106) 

7 135 225 54.5(106) -0.707 0.707 - 38.5(106) -38.5(106) 

8 45 277.5 62.5(106) 0.707 0.707 -62.(106) 8.(106) 

2. Calculations 

Calculation of the matrices of coefficients of Eqs. 34, 35 and 36 is per­
formed in two stages. In the first stage, equations are developed in terms of 
symbols. Subscripts appearing in the right hand side of this class of equa­
tions denote the stiffness element characteristic 11umber, Symbols [A], 
[ B] , a, b, c, d are those pertaining to Eqs. 45 to 48 Table 3. In the second 
stage of development numerical substitutions are made into the expressions 
developed in the first stage. 

First Stage 

w 2 
[Kl] =al (49a) 

8 

(49b) 

n=2 
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. . . . . . . . . . . . . . . . . . . . . . . . . . . .. (5 I b) 

................................. (53b) 
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8 

[M~] = ~ bn en [An] ............................. (54b) 

8 

[ Kn = ~ an en [An] ................................ (55b) 
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Second Stage 

[ 017'8 
0.1376 0.0161 000'101 

[K\] =[Kw]+ [K;]= 0.1376 0.2476 0.1503 0.0271 

0.0161 0.1503 0.2344 0.1036 
( 10) ............... (58) 

0.0090 0.0271 0.1030 0.0655 

[ 0136891 
o.1og41 0.013363 

000747] 

[M\] 
0.108417 · 0.193843 0.118958 0.22493 

9 
0.013363 0.118958 0.182887 0.080197 

( IO ) ..... (60) 

0.007470 0.022493 0.080197 0.049574 

lo 1705 
0.1356 0.0161 

00090 l 
[L~] = [L;J+ [Li]= 

0.1356 0.2435 0.1483 0.0270 

0.0161 0.1483 0.2303 0.1016 
( 10) . ' . . . . . . . . . . . . . . . . ((,2) 

0.0090 0.0270 0.101(, 0.0635 

[ O 13689' 
0.10841 0.013363 

000747] 

[K~]=[K;J+[K~] = 
0.108417 0.193843 0.118958 0.022493 

(109 ) ....... (64) 
0.013363 0.118958 0.182887 0.080197 

0.007470 0.022493 0.080197 0.049574 

....... ((,5) 

[01177" 0.093472 0.011270 00%30'.l 
[M~] = [Mn+ [M~]= 

0.093472 0.167554 0.102362 0.018970 
(10

1
\ ...... (66) 

0.011270 0.102362 0.158284 0.06%72 

0.006300 0.018970 0.06%72 0.043002 
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Also with values taken from Table 3 

0.112 

0.224 

0.336 

0.448 

(103) ................................ (67) 

0 

0 

0 

0 

.......................................... (68) 

-0.038 

-0.076 11 (10 ) .............................. (69) 
-0.114 

-0.152 

A system of twelve equations with twelve unknown is assembled from the 
determined values: 

[Kn [Ln [Mn {u} {a F} 

[K~] [Ln [ M~] {v} = {b F} . . . . (70) 

[Kn [L~] [M~] {1} {c F} 

Solution of the above system through a computer program, gives the val­
ues shown in Table 4. 
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TABLE 4. DETERMINED VALUES OF DEFLECTIONS 
AND ROTATIONS 

Floor u V </> 
Level (ft.) (ft.) Radians 

Roof 0.0490 0 0.000447 

4 0.0453 0 0.000436 

3 0.0399 0 0.000405 

2 0.0330 0 0.000358 

It is seen that v deflections are zero; this is expected since the stiffness 
elements comprise a system symmetrical about the OY axis and all external 
forces are perpendicular to that axis. On the basis of the figures of Table 4, 
the roof plate is shown in the displaced and original position in Fig. 13; 
displacements are shown magnified 200 times. 

In plane displacements u", for each stiffness element, can be computed 
from Eq. 2a, and the force system necessary to keep the element in the 
known deflected configuration may be computed from the stiffness equation 
incorporating the appropriate stiffness matrix. Stress resultants in the 
frames can then be computed from the known lateral forces by a conven­
tional method. 

CONCLUSIONS 
Several methods of analysis of interconnected shear walls and shear wall­

frame systems, subjected to horizontal static loading, have been reviewed 
and summarized. All of the reviewed methods consider structures subjected 
to the following restrictions: (1) shear walls and frames form rectangular 
grid plans, (2) the horizontal loading acting on the structure is parallel to 
the grid, and (3) the structure undergoes uniaxial displacements parallel to 
the grid. 

A method of analysis, free of the above restrictions. and intended to sun­
plement rather than replace the existing methods, has been presented here­
in. The method, based on the theorem of minimum total potential, is em­
ploying stiffness matrices of the constituent stiffness elements of the struc­
ture analyzed, as the basic input information. Stiffness matrices may in-
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Fig. 13 - Example Building- Roof Displacements 

elude the effect of shearing, torsional and .axial deformations. The "general 
case" has been developed first, in which the structure to be analyzed cons­
ists of shear walls and frames interconnected through rigid floor dia­
phragms undergoing biaxial and rotational displacements. Then, the meth­
od was applied to the special case of planar arrays of shear walls and 
frames of arbitrary characteristics, and connected through inextensible 
links, undergoing uniaxial displacements only. The unknown displacement 
quantities form algebraic systems of linear equations, which can be solved 
by means of a digital computer. 

In order to exhibit the workability of the method, a numerical example 
has been presented employing a Y shaped in plan building. In order to keep 
the numerically developed matrices within a manageable space, the number 
of stories was limited to four, without, however, impairing the general char­
acter of the method. Increasing the number of stories ofthis example build­
ing would have only the effect of increasing the size of computational ma­
trices with all other steps remaining the same. 
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APPENDIX I 
Determination of Stiffness Coefficients 

.1. Shear Walls 
The stiffness coefficients for a shear wall taking into consideration the 

effect of bending and shear, can be determined directly or indirectly. The 
direct method would consist of deflecting, by a unit displacement, the canti­
lever structure, one point at a time, while locking all other points against 
translational displacements only. Thus, the stiffness coefficient Akj is equal 
to the reaction required to keep point k locked against displacement, while 
a load applied at joint j is producing a unit displacement at j. 

Reactions can be determined from a moment distribution. Fixed end 
moments, stiffness and carry over factors can be determined from the rela­
tionships in Reference 22, as follows: 

ST = 

6(EI) 
FEM = I} 

= 2(EI) 
L 

a .......................... . (47) 

{ 
2+{3} 
I + 2{3 

(48) 
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__!_--=._[_ 
2 + {3 

........ , . . . . . . . . . . . . . . . . . . . . . . (49) 

in which FEM, ST, COF signify fixed end moment, stiffness, and carry 
over factor respectively; subscripts 1 and 2 refer to the near and far end of 
the member respectively; 8denotes the angle of rotation of end 1 while end 
2 is fixed; f3 is a parameter given by 

{3 = 
6(EI) 

L2 (AG) 

In the above relationships a constant shear distribution has been assumed 
through the depth of the member. A parabolic distribution, taking into ac­
count the effect of intervening ribs23, can be effected by a suitable modifica­
tion of the parameter /3. 

The indirect method of determining the stiffness coefficients, would in­
volve determining and inverting the flexibility matrix. 

In inspecting the stiffness matrix for correctness, it must be borne in 
mind that it must be symmetric about the main diagonal, and that the sum 
of the coefficients of any column, including the base shear coefficient if any, 
must be zero for equilibrium of the system. 

2. Frames 

Stiffness coefficients for beam-column frames due to primary effects 
(bending plus shear) can be determined according to the direct method out­
lined previously for shear walls. Axial deformations of columns generated 
in the deflection operation will induce secondary bending moments which 
in turn will cause additional deflections and reactions. The combined stiff­
ness coefficients will then be equal to the ratio of the sum of primary and 
secondary reactions to the sum of primary and secondary deflections. 

APPENDIX II - NOTATION 
The following symbols have been adopted for use in this paper: 

a, b, c = constants; 

A = stiffness coefficients; 
[A] = square stiffness matrix due to displacements parallel to OX axis; 

[A] = square stiffness matrix defined by Eq. 39; 
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AG = shearing rigidity; 

[BJ = square stiffness matrix due to displacements parallel to OY axis; 
[CJ = square stiffness matrix due to tortional displacements; 
El = flexural rigidity; 
(F}= column matrix of external loads; 
{F}= column matrix of external loads defined by Eq. 42; 

[K], [L], [MJ = combined stiffness matrices defined by Eqs. 8, 11, 14; 
M = bending moment; 

OX, OY, OZ = cartesian coordinate system whose OZ axis is parallel to the verti­
cal axis of the building; 

OX", OY", OZ = cartesian coordinate system whose OX", OY" axes are parallel to 
the principal axes of the shear wall cross section, or frame plan 
projection; 

P = force acting on shear wall or frame at floor level; 
(P}= load column matrix; 

r = radius of rotation of shear wall or frame centroid; 
u, v = displacements of the rigid floor diaphragm with respect to XOY 

system; 

displacements of the shear wall or frame centroid in moving from 
position I to position 2; 

uo, vo = displacements of the shear wall or frame centroid (with respect to 
XOY system) in moving from position 0 to position 1 ; 

u', v' = displacements of the shear wall or frame centroid (with respect to 
XOY system) in moving from position Oto position 2; 

( u} = displacement column matrix; 
(u}= displacement column matrix defined by Eq. 37b; 

V = strain energy; 
V = potential of external loads; 

GREEK SYMBOLS 

P = angle between XOY and X"OY" systems; 
0 = angle between axis OX and the line drawn from the center of ro­

taions C to centroid of shear wall or frame; 
<j, = horizontal rotation of floor diaphragm; 
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SUPERSCRIPTS 
c signifies column; 
w denotes shear wall; 

f signifies frame; 
II denotes quantities pertaining to X"OY" system; 

SUBSCRIPTS 
a signifies quantities pertaining to displacements parallel to OX axis; 
b denotes quantities pertaining to displacements parallel to OY axis: 
n denotes quantities pertainingto nth floor; 
L signifies matrix quantities applicable to 1th face and including all 

floors; 
f.n denotes quantities pertaining tof th face and nth floor of the build­

ing; 
q, signifies quantities pertaining to rotational displacements; 


