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MYRON B. FIERING * 

ABSTRACT 
This paper describes a model for the allocation of research funds to a se

ries of urban experiments whose outcomes determin·e the ultimate disposition 
and allocation of very much greater amounts of money for urban housing 
projects. It is shown that the allocation model is a particular applic'ation of 
a technique which can be widely applied in the design of statistical experi 0 

menis, and the paper describes the algorithm for solving the 0, 1 integer 
programming problem which results from the formulation of the urban 
model. Central to the working of the model is the derivation of an associa
tion matrix which expresses the likelihood that certain experimental proce
dures will be paired in actual practice. 

Key Words: experimental design, housing, city planning, mathematical programming, 
random sampling, gradient procedure. 

Introduction 

The operations research literature contains literally dozens of references 
to solutions of 0,1 programming problems. Quite properly, these many pa
pers focus on the algorithm for extracting the solution and on demonstration 
of its convergence, uniqueness, and other desirable properties. In most cases 
the underlying problem - abstracted from the physical, military, manage
ment or social sciences - is given short shrift in favor of the more appeal
ing, relevant, and tractable analysis. 

This paper reverses the traditional emphasis and concentrates primarily 
on construction of the objective function for a 0, 1 programming problem; 
passing attention is paid to a new solution algorithm based on a gradient 
technique. This algorithm does not purport to find the global optimum but 
rather a series of local optima from which it is possible to decide whether to 
accept the best available solution and terminate the process, or to run addi
tional trials in the hope of locating a more desirable solution. 

*Gordon McKay, Professor of Engineering and Applied Mathematics, Harvard Uni
versity, Cambridge, Massachusetts. 
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The problem originated from a study of urban housing factors, but is an
alytically akin to an extension of sampling theory and as such can be modi
fied and rendered generally applicable in that statistical discipline. The orig
inal study was undertaken under the auspices of the Department of Housing 
and Urban Development, and the author acknowledges the assistance pro
vided to him as a consultant to Abt Associates, Inc., which has approved the 
release and publication of this material; unfortunately, the numerical prob
lem which spawned this solution was not available for publication. 

The Problem 
Suppose a large sum of money is to be made available for urban com

munities to spend on housing. The primitive institutional and technological 
constraints imposed on the housing industry are widely known and seeming
ly insurmountable; they have led Harvey Brooks to characterize housing as 
America's "largest cottage industry". The sponsor, whether it be a federal, 
state or local agency, a foundation, or a private combine, is anxious to over
come as many institutional and technological obstacles as possible, and 
therefore identifies a number of potential changes in these institutional and 
technological constraints in the hope that some combination of them might 
effect major benefits (e.g., cost reduction or quality improvement) in the 
projected housing development. 

The list of such potential changes is very long indeed; a few typical en-
tries are: 

1. tax and financing advantages, 
2. the use of exotic construction materials, 
3. modernization of building codes, 
4. modernization of union and restrictive rules, and 
5. factory assembly, plumbing, wiring, and drilling of modular 

components. 
The optimal combination of factors is defined as that set of changes 

which is best for a particular community, and, unhappily, no analysis seems 
capable of determining this optimum. Experimentation using various com
binations in several cities offers some promise, but it is certain to be fright
fully expensive and, even worse, doomed to inadequacy because the number 
of possible combinations is prohibitively large and consequently precludes 
examination of all but a small fraction of the alternatives. The problem ad
dressed here is whether prior analysis can delineate, for particular cities, 
certain combinations which are more advantageous than others in that they 
provide more information about the alternatives. Note that this is quite dif
ferent from attempting to find the optimal combination. The optimal combi-
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nation maximizes (or minimizes) some housing-oriented benefit function 
while here we are concerned with information and its maximization by 
selection of experimental modules. To be sure, the two processes (experi
mentation and construction of the prototype) are intimately and ultimately 
related, but formally they are quite distinct. 

The following paragraphs describe the decision process in formal, analyt
ical terms. The alternatives are called experiments and the several places 
available for experimentation are called cities (this notation is made explicit 
because the locales may in fact not be cities and the technological and insti
tutional changes may not in fact resemble experiments in the scientific 
sense). 

A set of experiments ~ E 1 , E2, . , En f is availabl_e, and some sub-set of E 

must_ be assigned to a group of cities.~ C 1, C2, .. , Cm f so that the total 

amount of information derived from performing the experiments at the sev
eral cities is maximized. Symbolically, we seek an n x m matrix called b. 
such that the element Oij of b. is unity if experiment Ei .is performed at city 

G:j and is zero otherwise. The matrix b. is a decision matrix, as shown in ar
ray A-1: 

Cities 
C1 C2 ' Cm 

E I 

E,, 

I: perform Ei at Cj 
o·· = Experiments IJ = t, (A-1) 

0: do not perform Ei at _Cj 

Decision Matrix 
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Clearly, certain combinations of (0,1) in b.are more appropriate than oth- -
ers, For example, the cost of performing a certain sub-set of experiments at 
city Cj may be quite different from performing the same sub-set of experi
ments at city Ck, so that if the amount of information obtained from the ex
periments is equal, then clearly the experiments should be done at that city 
in which the cost is least. It follows that the optimal solution for 6 must con
sider a matrix of costs; the cost matrix is also of dimension n X m and the 
element Cij is the cost of performing Ei at Cj, as shown in array A-2. 

Cities 

Experiments (A-2) 

Cost Matrix 

We make the fundamental assumption that the information obtained 
from performing a sub-set of experiments at Cj is precisely the same as that 
obtained from the same sub-set at Ck. The cities are indistinguishable with 
respect to results but not with respect to costs. The cost of performing exper
iment Ei is not independent of the city Cj at which the experiment is per
formed. Therefore, in all but the most trivial cases, the rows of the cost ma
trix in array A-2 are not identical so that the cost information cannot be 
compressed into an n-dimensional vector. 

Of course, the political and economic realities encountered in any such 
experimental enterprise impose a large number of constraints on the specifi
cation of the decision matrix 6 . Obedience to geographical distribution, 
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whether mathematically prudent or not, demands that each city Cj get its 
fair share of the experimental budget. This paper does not purport to judge 
the worthiness of any particular distributional requirement, but merely pre
sents a technique whereby the cost of geographical distribution can be mea
sured by the difference in information between the optimal experimental 
procedure and the actual; from the magnitude of this loss it is possible to 
impute some economic metric to the political luxury of geographical distri
bution, and to render an informed judgment on the degree of geographical 
distribution which the experimental procedure ought to accommodate. 

Other constraints enter the decision-making process. For example, cer
tain experiments may be uniquely adaptable to certain cities while it may be 
quite impossible to perform these same experiments elsewhere. Therefore 
the analysis must have some way of forcing certain elements 6 ij to unity and 
others to zero. 

The experiments cannot be scaled or sub-divided; that is, experiment Ei 
is or is not performed at city Cj. It is presumed that the level of experimen
tation (for any experiment) is uniquely determined at any city and that this 
level is reflected by the cost Cij• At first blush this would seem to make the 
problem easier because it eliminates the necessity for determining how in
tensive each potential experiment should be in each of the cities { Ci} and 
replaces it with a bistable, polar decision represented by the pair (0, 1). But 
in fact the converse is true; solving the (0, 1) problem is vastly more difficult 
than solving the corresponding continous problem in which intermediate 
levels of experimental intensity can be accommodated. 

In any event, a set of decisions must be made to define an experimental 
design on the grid represented by the intersection of experiments ~ Ei f and 

cities ~ Cj f A set of O's and 1 's are to be located so as to maximize the total 

amount of information obtained from the experimental design, all subject to 
appropriate geographical, institutional, and budge~ry constraints. If the 
number of experiments n is of the order of 20, and the number of cities m is 
of the order of 10, a solution consists of some 200 binary· digits. But this 
unimpressively small number belies the enormous number of feasible com
binations and permutations which are somehow inferior to the optimal solu
tion. Sorting through this enormous number of candidates in not a trivial 
task! 

Failure of Standard Techniques 
Consider an experimental design from which it is desired to evaluate two 

effects, and let these effects be measured by experiments Er and E 2 . Tradi
tional experimental design calls for four experiments: (i) both E 1 and E 2 
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absent, (ii) EI absent and E2 present, (iii) E I present and E 2 absent, and 
(iv) both EI and E 2 present. From this arrangement it is possible to evalu
ate the results of each effect alone and in combination, with conclusions 
usually cushioned by the limits of statistical significance. The number of 
combinations which must be considered in a complete factorial experiment 
is 2n, which is 1024 for the number of experiments n = 10. In this study, 
each city is associated with a unique combination of experiments; that is, 
one of the 1024 possible arrangements can be tried at each city. With 20 
cities, the total number of different assignments is the total number of com bi--· 
nations of 1024 items taken 20 at a time, or 

1024 C20 = 
1024! 

1004! 20! 
> 1060 (1) 

a truly staggering quantity. One of these assignments is best in the sense that 
it gives more information than any other, and it is our task to find that one. 

We are stymied on several accounts. First, with only 20 opportunities 
(i.e., cities) for experimentation rather than 1024, it is patently impossible 
to perform a factorial experiment which would (i) uniquely isolate the effect 
of any factor and (ii) specify interactions between that factor and all other 
combinations of factors. Second, accepting the constraint of 20 cities, it is 
clearly impossible to consider the systematic extraction of potential experi
ments because their number is so formidable. As a corollary, the variable 
cost structure which represents the fact that Cij might differ substantially 
from cik makes impractical a randomized block experimental design. Third, 
we have not yet come to grips with the essential problem of what it is that 
constitutes a "good" experiment, having devoted ourselves mainly to the 
vague notion that good experiments provide lots of information while poor 
ones do not. 

Modifications of the factorial design include such schemes as Latin 
Square, Graeco-Latin Squares, randomized blocks, and other techniques 
which can be studied in any one of many standard references. But these 
techniques specifically ignore the cost of experimentation at the several al
ternative locations, the value of information at the several locations, and the 
difficulties associated with establishing a criterion of performance for the 
experimental design. Consequently the standard techniques are rejected in 
this analysis, and it is necessary to consider techniques of mathematical 
programming. 
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Formulation of the Experimental Design as a Programming Problem 

If the constraints on cities, experiments and combinations can be written 
as inequalities, mathematical programming offers the preferred solution. 
The decision variables are the <'>ij, the elements of array A-1. There is a 
constraint on the total budget for the experimental design; this is expressed 
by the· inequality 

n 
1: 

i=] 

m 
1: 

j= I 
o ·· c· IJ I (2) 

where B is the total budget for the program. Moreover, there are two con
straints on the budgetary allowance for each city Cj, expressed by 

n 
1: Oij cij < Bj , Vj , 
i= I 

n 

L Ojj Cji > w ' Vj ' 
i=] • J 

(3) 

(4) 

where Bj is the maximum budget allocated to city Cj and Bj is the mini
mum. Judicious manipulation of the Bj and sj is tantamount to imposition 
of geographic distribution, and if all the Bj are zero then geographical dis
tribution is not a consideration in the optimal assignment of experiments. 

It is also clear that there must be some control exercised over the number 
of locations at which any experiment is performed. For example, if Ei is 
performed at every Cj, there is no basis on which to determine its effect be
cause there is no "untreated" city.· Conversely, it must be performed some
place, in at least one Cj. These constraints are expressed by 

m 
1: 

j= I 

m 
1: o ij > N: , Vi , 

j= I 

(5) 

_(6) 

where Ni and Ni are the upper and lower bounds, respectively, on the fre
quency of experiment Ei. 

Finally, to constrain the decision variables <'>ij to the values 0,1, the con
straint 

(7) 
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is imposed; this is satisfied by the two values bij = 0 and bij = I, and fur

ther ensures that the decision variables are non-negative and obey the con
straint 

(8) 

The programming proble·m is to maximize the total information, hereto
fore undefined but written functionally as 

I = 1(6), (9) 

subject to the constraints represented by equations (2) through (8). Because 
of equation (7), it is clear that the problem cannot be cast as a linear pro
gramming problem and that one of the more sophisticated relatives of this 
blessedly simple technique must be employed. 

The following sections develop a suitable non-linear obje.ctive function 
corresponding to equation (9), and because of the inherent difficulty of 
non-linear programming problems, provide an algorithm for approximating 
the analytical solution. 

The Objective Function 
Suppose there are three cities and three factors or experiments to be in

vestigated. There are 23 combinations in a complete factorial experiment, 
and all the combi~ations represented by the complete factorial arrangement 
cannot be accommodated in the available cities because 23 > 3. Array A-3 
shows the eight possible combinations, no more than three of which may be 
utilized in the experiment: 

Combination 

I 2 3 4 5 6 7 8 

E1 0 0 0 0 

Factor E2 0 0 0 0 (A-3) 

E .... 
J 

0 0 0 0 

I.t is necessary to maintain some diversity in the experimental design, so that 
there would be little benefit in repeating any column or combination in 
more than one city. In the more general case, for which different cities exert 



L 

AO,! ALGORITHM FOR CITY PLANNING 79 

unique effects, this statement would not be evident a priori; however, under 
the assumption that cities are indistinguishable with respect to effects (but 
not with respect to costs), replication is not indicated. 

Which columns, then, are more appropriate for the limited experimental 
effort to be undertaken in the several cities? Co~sider a square matrix A, of 
dimension n X n, whose elements represent the degree of association which 
exists between each pair of experiments or factors. For example, it might 
happen that in housing practice, when the several factors are incorporated 
into prototype construction projects, 'certain experiments tend to occur to
gether while others tend to preclude each other. If experiment E I is some 
institutional change which, if implemented, strongly implies that E 2 would 
be incorporated while E3 would generally be bypassed, the matrix A has the 
following general form 

0 + 

A + 0 (J\-4) 

0 

It is inappropriate to continue to label the rows and columns as experi
ments Ei because A represents the degree of association encountered in 
practice, not under the controlled conditions which constitute an experi
ment. However, for the sake of notational consistency, the symbol E will be 
used throughout and the context will make its significance abundantly 
clear. By definition, the elements along the main diagonal of A are equal to 
zero. Because EI and E 2 tend to occur together, the elements a I 2 and a21 
are positive; similarly, a 13 and a3 I are negative. The matrix A should not be 
thought of as a correlation matrix because there is no implication that E 1 

and E2 force the output of the experiment (whatever that may be) in the 
same direction, nor conversely for the negatively associated pair E 1 - E3. 
The elements of A do not specify reinforcement or antagonism in the usual 
statistical sense, but merely the fact that political and social reality dictate 
which pairs of experiments are likely to be run together, which are likely to 
be run individually, and which are independent . 
. Numerical values are assigned to the elements aij; the array A-4 merely 

specifies the signs for several of the constituent pairs. Elements whose abso
lute values are large reflect strong association or dissociation, and converse
ly for small values; the proposed solution is independent of an arbitrary 
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scale factor, so that while it might be convenient to adjust the elements of A 

to lie within the range - 1 :S. aij :S. 1, it is unnecessary to do so. 

Suppose a study of the three available experiments suggests 

E 1 : adoption of a performance-based building code, 

E2: availability of an attractive financing scheme for housing, 

Ea: acceptance by trade unions of liberalized restrictive practices. 

E I and E 2 are strongly associated; E I and E3, for the particular cities in

volv.ed, are thought to be strongly exclusive; E 2 and E3 are very nearly in

dependent in that the realization of one does not imply much about the oth

er. The matrix A, or association matrix, is 

E1 E2 E3 

E1 0 0.8 -0.6 

A = E2 0.8 0 -0.1 (A-5) 

E3 -0.6 -0.1 0 . 

(These values are abstracted from the Abt study cited earlier.) Because E 1 
and E 2 are strongly associated, combinations· 1, 2, 7, and 8 of array A-3 

appear to be most promising because in each of these EI and E 2 are per

formed or bypassed jointly. By the same reasoning, combinations 2 and 7 

appear to be more suitable than 1 or 8 because E I and E3 are strongly op

posed (that is, a13, being negative, suggests that both are unlikely to occur 

simultaneously). It therefore follows that however the several combinations 

are ranked, numbers 2 and 7 should fare better than their competitors. 

The several combinations are ranked by a simple algorithm. Each score 

is the weighted sum of elements aij of the matrix A, with i f- j, and with the 

weighting factors being positive or negative depending on whether Ei and 

Ej are run together or not. For combination 1, (0,0,0), all experiments are 

bypassed so that the score is the sum of elements in the matrix A; for con

venience we use only the elements above (or below) the main diagonal, 

thereby taking advantage of the symmetry of A. Thus for combination 1 the 

score is S 1_ = 0.8 - 0.6 - 0.1 = 0.1, as shown in Table I. Similarly, 

combination 2, (0,0, 1 ), ignores E I and E 2 ; E3 is performed, so that the 

score includes -a13i or + 0.6. Finally, because E 2 and E3 are not jointly 

performed or bypassed, the sign on a 13 is negative and the total score is S2 

= 0.8 + 0.6 + 0.1 = 1.5, as shown below. The scores do not represent a 
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physical parameter but rather the degree of "independent return" from the 

combination k. 

Combination, k . 1 2 3 4 5 6 7 8 

Score, 0.1 1.5 -1.3 -0.3 -0.3 -1.3 1.5 0.1 

Table I - Scoring System for Experiments 

Due to the symmetry of the factorial experiments and the matrix A, the 

scoring system is indifferent between complementary conbinations. Howev

er, if A is not symmetric because of peculiar institutional constraints, the 

scoring system would necessarily have to consider all elements of A rather 

than the triangular portion alone. 

Table 1 shows the score Sk corresponding to all combinations k, where k 

runs from 1 to 2n. If combination 2 were performed at all 3 sites, no infor

mation would be derived from the experimental design because there would 

be no standard against which to compare the information or effects de

rived from different experimental arrangements. 

Suppose city Ci is assigned experimental design or combination number 

ki and city Cj is assigned experimental design kj. The sum of scores for both 

cities is 

where Sij depends solely on the experimental arrays at each city and not on 

any measure of replication between them. The contribution to the total 

score which is due to the pair of cities Ci and Cj is the sum over all e~peri

ments 

(I 1) 

which, in effect, assigns a weighting factor of unity to those elements of the 

experimental design which are different in the two cities and a weighting 

factor of zero to those elements which are identical. Calculation of the total 

score is then simply' a matter of summing up over all possible pairs of cities 

in the decision matrix, so that the total amount of information derived from 

the experimental design may be written 

m m 
1- = L L (12) 

i=l j=i+ I 
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which is to maximized. It is a trivial matter to include an arbitrary weight
ing factor in each element of the matrix Sij, this factor to represent some a 
priori evaluation of the importance of particular experiments at particular 
places. If such a factor, say Aijk, is added, the total information to be max
imized is 

m m 
I= ~ ~ 

i=l j=i+l 

n 
[ ~ (0 ki - 0 kj )2 Ajjk sij ] 
k=l 

(13) 

This completes the formulation of the problem as a non-linear (0, I) inte
ger programming problem subject to linear constraints, but unhappily there 
is little promise of a solution! The essential feature in formulating the prob
lem is an elaborate structure involving the matrix A; this is necessitated by 
the fact that there is no specific measure for the benefit accruing to any com
bination of experiments at a particular city, so the usual notion of economic 
benefits is replaced by a formulation which measures the absence of replica
tion and, simultaneously, is strongly influenced by the closeness with which 
experimental arrangements agree with the format and political constraints 
within which actual construction projects are presumed to operate. Again, it 
is assumed that the information obtained from any one city is as useful as 
that obtained from any other; the extent to which this is untrue can be ac
commodated by assigning a range of values to the parameters Aijk. For the 
example cited here, and for the larger problem described above, all values 
of ,\ are set at unity so that the program does not distinguish between infor
mation obtained at the several cities. 

To summarize, the decision variables are the values of 8 which appear in 
equation (13); it is desired to find that set of B's which maximizes the infor
mation defined in equation (13), subject to the several constraints in equa
tions (2) through (8). The next section is devoted to obtaining a numerical 
approximation to the exact solution of the programming problem. 

Numerical Approximation to the Solution 
The algorithm developed for this problem is a steepest ascent or gradient 

technique which starts from a random feasible solution as defined by a deci
sion matrix b. and proceeds therefrom to a new matrix 6 1 which is a local 
optimum in the sense that interchanging any adjacent (0, 1) pair produces 
either an infeasible solution or a lessening of the information I(b.). Another 
random feasible start is then made, and a new local optimum 6 2 is reached; 
after several random starts, the most advantageous (or locally) optimal val
ue of 1(6) is chosen to ,approximate the (globally) optimal l(b.) and the cor-
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responding decision matrix, 6, is specified as the experimental design to be 

implemented. 

The following steps are executed in the algorithm: 

I. Read all control data; the association matrix A; the cost matrix C; the 

several budgets B,B*, N,N*; and any predetermined combinations 

which specify that E I is, or is not, to be performed at Cj-

2. Calculate the score Sk for all experimental combinations, k = 
1,2, ... ,211. Clearly, for n large, the number of combinations is 

formidable. 

3. Select a pair of rectangularly distributed random sampling integers in 
the range 1 < i < n, 1 < j < m, and assign oij = 1 unless one or 

more of the following conditions prevails: 

(a) the intersection o ij has been precluded by the input data, 

(b) the intersection oij has already been established to be unity, 

(c) the budget at Cj is exceeded, 

(d) the limitation on Ni is exceeded, or 

(e) the total budget B is exceeded. 

Continue to put values o ij = 1 until condition (e) is violated, where

upon a quasi-feasible solution is defined. This solution obeys any 

constraints on maxima, but not necessarily those on minima. These 

latter constraints are, for the moment, neglected. 

4. Calculate the information 1(6). 

5. Isolate that pair of experiments Ep, Eq for which apq is a maximum, 
and adjust 6 as follows: 

(a) if apq > 0, try to make opk f- oqk, starting with that city Ck 

which minimizes the cost of making the exchange; 

(b) if apq < 0, try to make opk f- oqk, again starting with that Ck 

which minimizes the cost; 

(c) all adjustments are made subject to the budgetary and frequency 
constraints. 

6. Move to a new pair of experiments Er, Es for whichlars_lis second
largest, and perform step 5 again. Continue iterating in this way, each 

time using the largest remaininglaijj.Finally, when all distinct pairs 

are exhausted (no more than-n(n-1)/2 pairs are possible, and many of 

these may have aij = 0), a local optimum is reached. 

7. Store the value I(t:.) corresponding to the decision vector 6 1 • 
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8. · Make a new random start, as described in step 3, and continue until 
an appr:opriate number of '1i_ are investigated. The stopping point is 
defined, in part, by the relative smoothness of the function 1(6) and· 
by the execution time required _to locate a local optimum. 

9. Finally, identify the approximate global optimum and either termi
nate the solution or start again with new input data, as described in 
step 1, to determine the sensitivity of the solution to a range of input 
parameters. 

Example 
Continuing our numerical example, we assume the following parameters 

and constraints: 

B = 2 

B·· = 2, Vj J 

B·* ] = o· v· ' . J 

c·· = I, Vi,j IJ 

Ni = 2, Vi 

N* = 0, Vi 
i 

Aijr = !, Vij,k 

and the trial design or decision matrix: 

Experiment 2 

_3 

0 

0 

City 

2 

0 

0 

3 

0 

Thus, from Array A-3, we have k1 = 5, k2 = 3, and k3 = 1. For these 
2 cities we have S12 = S5 + S3 = -:- 1.6. If now we sum the products 
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(1 - 0)2C- 1.6) + (0 - I )2( - 1.6) + (0 - 0)( - 1.6) = - 3.2 taken down 
columns I and 2 of the decision matrix, equation 11 is evaluated. It is a. 
simple matter to sum down every pair of columns: 

-3.2 I and 2 

I and 3 

2 and 3 - 1.2 [ (0- 0)2 + (1- 0)2 + (0- 0)2 ] = - 1.2 

I = -,4.6 

where I is the information, equation 12. 

Each possible (and feasible) decision matrix is associated with a value of 
'I; for small problems, we could draw an exhaustive list. However, even for 
this simple problem with m = n = 3, it is too demanding to do so by hand. 
Evaluation by computer shows a total of 28 feasible matrices, with I max-
imized when the decision matrix is · 

City 

2 3 

0 0 

Experiment 2 0 0 

3 0 0 0 

Inferential Analysis 

It is prudent to assume that the response surface representing the infor
mation function 1(6) has many local optima so that most randomly selected 
experimental designs will lead to globally non-optimal solutions. The extent 
of this shortcoming does not depend on the number of local peaks; rather it 
is a function of the difference between the global solution and the best of 
the local optima, a quantity which cannot be estimated with any degree of 
certainty but which does lend itself to certain statistical theorems turning on 
sampling reliability. For example, the probability that the best of p random 
and independent trials lies in the upper 100,p percent of all possible solu
tions is I - ( I - ,p )n; for example, if n = 30 and ,p = 0.1, the probability 
that the .best of 30 trials lies in the upper IO percent of all possible solutions 
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is 1 -(0.9)30 = 0.957. This says nothing about the difference between the 
best of the sample and the global optimum, but it does provide a lower limit 
to the reliability of random sampling techniques because by use of gradient 
methods, the reliability of the result is improved and consequently is better 
than that which can be ascribed to the unimproved random sampling. This 
result is independent of the number of decision variables required to char
acterize any trial design or decision matrix. 

The suitability of the best local solution can be estimated by a study of 
the range of the other local maxima. If the surface appears to be regular and 
fairly smooth, small values of n are tolerable. If, however, the surface shows 
abrupt changes of elevation and slope, a more extensive sampling investiga
tion is warranted, provided, of course, that the cost of so doing does not ap
pear to exceed the potential improvement which might be gained in the 
response. 

Conclusion 

A computer program to implement the solution algorithm was written in 
FORTRAN IV for the IBM 7094. It can accommodate up to ten cities and 
twenty experiments, and has been run successfully on matrices of this size 
within four to six minutes of computation time. The results have been en
couraging, showing major improvements (that is, better response) over the 
best manual solutions for a wide range of budgetary and geographic con
straints. These solutions are being implemented, and it is hoped that a sec
ond paper can report on the results of field testing. However, more signifi
cant than this numerical achievment is the formalism for casting an urban 
problem in precise operational terms. It is here, at the interface between 
mathematics and the social sciences, that the real excitement in modern op
erational analysis is to be found. 




